Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Dual-field plated beta-Ga2O3 nano-FETs with an off-state breakdown voltage exceeding 400 V

Full metadata record
DC Field Value Language
dc.contributor.authorBae, Jinho-
dc.contributor.authorKim, Hyoung Woo-
dc.contributor.authorKang, In Ho-
dc.contributor.authorKim, Jihyun-
dc.date.accessioned2021-08-31T09:35:30Z-
dc.date.available2021-08-31T09:35:30Z-
dc.date.created2021-06-18-
dc.date.issued2020-02-28-
dc.identifier.issn2050-7526-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/57600-
dc.description.abstractThe nature of ultra-wide energy bandgap (UWBG) semiconductors enables transistors to withstand large voltage swings, ensuring stable high-power and high-efficiency operation. The potential of UWBG beta-Ga2O3 nano-field effect transistors (nano-FETs) has not been fully explored due to premature avalanche breakdown in these devices, despite their extremely high critical breakdown field. An exfoliated beta-Ga2O3 nano-layer was fabricated into a depletion-mode nano-FET integrated with dual field-modulating layers to redistribute the electric field crowded around the drain edge of the gate electrode. A stepped-gate field-plate and a source-grounded field-modulating electrode were integrated into the planar beta-Ga2O3 nano-FETs. Excellent output and transfer characteristics were demonstrated, i.e. a low subthreshold swing (95.0 mV dec(-1)) and high on/off ratio (B1010), achieving an ultra-high off-state three-terminal breakdown voltage of 412 V. The experimental results were compared with numerical simulations, confirming the efficacy of the dual-field plate structure. The introduction of multiple field-modulating plates into the UWBG beta-Ga2O3 nano-FETs greatly increased the voltage swings to over 400 V, suggesting the possibility for small footprint power electronics.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherROYAL SOC CHEMISTRY-
dc.subjectALGAN/GAN HEMTS-
dc.subjectPOWER-
dc.titleDual-field plated beta-Ga2O3 nano-FETs with an off-state breakdown voltage exceeding 400 V-
dc.typeArticle-
dc.contributor.affiliatedAuthorKim, Jihyun-
dc.identifier.doi10.1039/c9tc05161a-
dc.identifier.scopusid2-s2.0-85080930938-
dc.identifier.wosid000518640600035-
dc.identifier.bibliographicCitationJOURNAL OF MATERIALS CHEMISTRY C, v.8, no.8, pp.2687 - 2692-
dc.relation.isPartOfJOURNAL OF MATERIALS CHEMISTRY C-
dc.citation.titleJOURNAL OF MATERIALS CHEMISTRY C-
dc.citation.volume8-
dc.citation.number8-
dc.citation.startPage2687-
dc.citation.endPage2692-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.subject.keywordPlusALGAN/GAN HEMTS-
dc.subject.keywordPlusPOWER-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Chemical and Biological Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE