Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Deep Learning of Static and Dynamic Brain Functional Networks for Early MCI Detection

Full metadata record
DC Field Value Language
dc.contributor.authorKam, Tae-Eui-
dc.contributor.authorZhang, Han-
dc.contributor.authorJiao, Zhicheng-
dc.contributor.authorShen, Dinggang-
dc.date.accessioned2021-08-31T10:59:05Z-
dc.date.available2021-08-31T10:59:05Z-
dc.date.created2021-06-19-
dc.date.issued2020-02-
dc.identifier.issn0278-0062-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/57745-
dc.description.abstractWhile convolutional neural network (CNN) has been demonstrating powerful ability to learn hierarchical spatial features from medical images, it is still difficult to apply it directly to resting-state functional MRI (rs-fMRI) and the derived brain functional networks (BFNs). We propose a novel CNN framework to simultaneously learn embedded features from BFNs for brain disease diagnosis. Since BFNs can be built by considering both static and dynamic functional connectivity (FC), we first decompose rs-fMRI into multiple static BFNs with modified independent component analysis. Then, the voxel-wise variability in dynamic FC is used to quantify BFN dynamics. A set of paired 3D images representing static/dynamic BFNs can be fed into 3D CNNs, from which we can hierarchically and simultaneously learn static/dynamic BFN features. As a result, the dynamic BFN features can complement static BFN features and, at the meantime, different BFNs can help each other toward a joint and better classification. We validate our method with a publicly accessible, large cohort of rs-fMRI dataset in early-stage mild cognitive impairment (eMCI) diagnosis, which is one of the most challenging problems to the clinicians. By comparing with a conventional method, our method shows significant diagnostic performance improvement by almost. This result demonstrates the effectiveness of deep learning in preclinical Alzheimers disease diagnosis, based on the complex and high-dimensional voxel-wise spatiotemporal patterns of the resting-state brain functional connectomics. The framework provides a new but intuitive way to fully exploit deeply embedded diagnostic features from rs-fMRI for a better-individualized diagnosis of various neurological diseases.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC-
dc.subjectMILD COGNITIVE IMPAIRMENT-
dc.subjectALZHEIMERS-DISEASE-
dc.subjectPREFRONTAL CORTEX-
dc.subjectCONNECTIVITY-
dc.subjectCLASSIFICATION-
dc.subjectTHALAMUS-
dc.subjectATROPHY-
dc.subjectMODEL-
dc.subjectICA-
dc.titleDeep Learning of Static and Dynamic Brain Functional Networks for Early MCI Detection-
dc.typeArticle-
dc.contributor.affiliatedAuthorKam, Tae-Eui-
dc.contributor.affiliatedAuthorShen, Dinggang-
dc.identifier.doi10.1109/TMI.2019.2928790-
dc.identifier.wosid000525258900019-
dc.identifier.bibliographicCitationIEEE TRANSACTIONS ON MEDICAL IMAGING, v.39, no.2, pp.478 - 487-
dc.relation.isPartOfIEEE TRANSACTIONS ON MEDICAL IMAGING-
dc.citation.titleIEEE TRANSACTIONS ON MEDICAL IMAGING-
dc.citation.volume39-
dc.citation.number2-
dc.citation.startPage478-
dc.citation.endPage487-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaImaging Science & Photographic Technology-
dc.relation.journalResearchAreaRadiology, Nuclear Medicine & Medical Imaging-
dc.relation.journalWebOfScienceCategoryComputer Science, Interdisciplinary Applications-
dc.relation.journalWebOfScienceCategoryEngineering, Biomedical-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalWebOfScienceCategoryImaging Science & Photographic Technology-
dc.relation.journalWebOfScienceCategoryRadiology, Nuclear Medicine & Medical Imaging-
dc.subject.keywordPlusMILD COGNITIVE IMPAIRMENT-
dc.subject.keywordPlusALZHEIMERS-DISEASE-
dc.subject.keywordPlusPREFRONTAL CORTEX-
dc.subject.keywordPlusCONNECTIVITY-
dc.subject.keywordPlusCLASSIFICATION-
dc.subject.keywordPlusTHALAMUS-
dc.subject.keywordPlusATROPHY-
dc.subject.keywordPlusMODEL-
dc.subject.keywordPlusICA-
dc.subject.keywordAuthorDiagnosis-
dc.subject.keywordAuthorconvolutional neural networks-
dc.subject.keywordAuthorbrain network-
dc.subject.keywordAuthorindependent component analysis-
dc.subject.keywordAuthormild cognitive impairment-
dc.subject.keywordAuthordeep learning-
dc.subject.keywordAuthorresting state-
dc.subject.keywordAuthorfunctional MRI-
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Artificial Intelligence > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE