Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Structural combination of polar hollow microspheres and hierarchical N-doped carbon nanotubes for high-performance Li-S batteries

Full metadata record
DC Field Value Language
dc.contributor.authorLee, Jun Yeob-
dc.contributor.authorPark, Gi Dae-
dc.contributor.authorChoi, Jae Hun-
dc.contributor.authorKang, Yun Chan-
dc.date.accessioned2021-08-31T12:26:22Z-
dc.date.available2021-08-31T12:26:22Z-
dc.date.created2021-06-18-
dc.date.issued2020-01-21-
dc.identifier.issn2040-3364-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/57974-
dc.description.abstractHierarchical structured materials constructed with conductive carbon materials have been extensively studied as S host materials for Li-S batteries. However, their outwardly developed hierarchical structures, which do not contain structures or materials to inhibit polysulfide dissolution, lead to the dissipation of dissolved polysulfides and poor dispersion properties during the slurry-making process, which results in non-uniformity in the cathodes. Herein, an assembly of polar materials (hollow structured SiO2 microspheres) and electrically conductive hierarchical N-doped bamboo-like carbon nanotubes (b-NCNTs) is designed as an efficient S host material for minimizing the dissolution of polysulfides during Li-S battery operations. Highly aligned and packed b-NCNTs are grown in hollow structured SiO2 microspheres. The SiO2 layer coated on the surface of the hollow CoFe2O4 microspheres plays a key role in the synthesis of easily dispersible hierarchical b-NCNTs microspheres (b-NCNTs@SiO2). The S-loaded b-NCNTs@SiO2 electrodes show better cycling stability than S-loaded b-NCNTs electrodes. The polysulfide trapping of the polar SiO2 layer and the well-developed b-NCNTs minimize the dissolution of polysulfides during cycling. In addition, the introduction of electronegative N atoms into the b-NCNTs lattice enhances their polysulfide trapping ability. The S-loaded b-NCNTs@SiO2 electrodes exhibit stable discharge capacities of >771 mA h g(-1) over 195 cycles at a current density of 0.5 C and a high reversible capacity of 486 mA h g(-1) even at a high current density of 5.0 C.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherROYAL SOC CHEMISTRY-
dc.subjectLITHIUM-SULFUR BATTERIES-
dc.subjectMESOPOROUS SIO2-
dc.subjectANODE MATERIALS-
dc.subjectHIGH-CAPACITY-
dc.subjectCATHODE-
dc.subjectSTORAGE-
dc.subjectNANOPARTICLES-
dc.subjectSPHERES-
dc.subjectSHELL-
dc.subjectCORE-
dc.titleStructural combination of polar hollow microspheres and hierarchical N-doped carbon nanotubes for high-performance Li-S batteries-
dc.typeArticle-
dc.contributor.affiliatedAuthorKang, Yun Chan-
dc.identifier.doi10.1039/c9nr09807k-
dc.identifier.scopusid2-s2.0-85078389914-
dc.identifier.wosid000509545700088-
dc.identifier.bibliographicCitationNANOSCALE, v.12, no.3, pp.2142 - 2153-
dc.relation.isPartOfNANOSCALE-
dc.citation.titleNANOSCALE-
dc.citation.volume12-
dc.citation.number3-
dc.citation.startPage2142-
dc.citation.endPage2153-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.subject.keywordPlusLITHIUM-SULFUR BATTERIES-
dc.subject.keywordPlusMESOPOROUS SIO2-
dc.subject.keywordPlusANODE MATERIALS-
dc.subject.keywordPlusHIGH-CAPACITY-
dc.subject.keywordPlusCATHODE-
dc.subject.keywordPlusSTORAGE-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusSPHERES-
dc.subject.keywordPlusSHELL-
dc.subject.keywordPlusCORE-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE