Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Strategy to control magnetic coercivity by elucidating crystallization pathway-dependent microstructural evolution of magnetite mesocrystals

Full metadata record
DC Field Value Language
dc.contributor.authorPark, Bum Chul-
dc.contributor.authorCho, Jiung-
dc.contributor.authorKim, Myeong Soo-
dc.contributor.authorKo, Min Jun-
dc.contributor.authorPan, Lijun-
dc.contributor.authorNa, Jin Yeong-
dc.contributor.authorKim, Young Keun-
dc.date.accessioned2021-08-31T13:41:42Z-
dc.date.available2021-08-31T13:41:42Z-
dc.date.created2021-06-18-
dc.date.issued2020-01-15-
dc.identifier.issn2041-1723-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/58301-
dc.description.abstractMesocrystals are assemblies of smaller crystallites and have attracted attention because of their nonclassical crystallization pathway and emerging collective functionalities. Understanding the mesocrystal crystallization mechanism in chemical routes is essential for precise control of size and microstructure, which influence the function of mesocrystals. However, microstructure evolution from the nucleus stage through various crystallization pathways remains unclear. We propose a unified model on the basis of the observation of two crystallization pathways, with different ferric (oxyhydr)oxide polymorphs appearing as intermediates, producing microstructures of magnetite mesocrystal via different mechanisms. An understanding of the crystallization mechanism enables independent chemical control of the mesocrystal diameter and crystallite size, as manifested by a series of magnetic coercivity measurements. We successfully implement an experimental model system that exhibits a universal crystallite size effect on the magnetic coercivity of mesocrystals. These findings provide a general approach to controlling the microstructure through crystallization pathway selection, thus providing a strategy for controlling magnetic coercivity in magnetite systems.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherNATURE PUBLISHING GROUP-
dc.subjectPRENUCLEATION CLUSTERS-
dc.subjectIRON-OXIDES-
dc.subjectSOLUBILITY-
dc.subjectNUCLEATION-
dc.subjectMECHANISM-
dc.subjectGROWTH-
dc.subjectTRANSFORMATION-
dc.subjectPRECURSORS-
dc.subjectKINETICS-
dc.titleStrategy to control magnetic coercivity by elucidating crystallization pathway-dependent microstructural evolution of magnetite mesocrystals-
dc.typeArticle-
dc.contributor.affiliatedAuthorPark, Bum Chul-
dc.contributor.affiliatedAuthorKim, Young Keun-
dc.identifier.doi10.1038/s41467-019-14168-0-
dc.identifier.scopusid2-s2.0-85077941059-
dc.identifier.wosid000512534300009-
dc.identifier.bibliographicCitationNATURE COMMUNICATIONS, v.11, no.1-
dc.relation.isPartOfNATURE COMMUNICATIONS-
dc.citation.titleNATURE COMMUNICATIONS-
dc.citation.volume11-
dc.citation.number1-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalWebOfScienceCategoryMultidisciplinary Sciences-
dc.subject.keywordPlusPRENUCLEATION CLUSTERS-
dc.subject.keywordPlusIRON-OXIDES-
dc.subject.keywordPlusSOLUBILITY-
dc.subject.keywordPlusNUCLEATION-
dc.subject.keywordPlusMECHANISM-
dc.subject.keywordPlusGROWTH-
dc.subject.keywordPlusTRANSFORMATION-
dc.subject.keywordPlusPRECURSORS-
dc.subject.keywordPlusKINETICS-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Young Keun photo

Kim, Young Keun
공과대학 (신소재공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE