THE WEAK MAXIMUM PRINCIPLE FOR SECOND-ORDER ELLIPTIC AND PARABOLIC CONORMAL DERIVATIVE PROBLEMS
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kim, Doyoon | - |
dc.contributor.author | Ryu, Seungjin | - |
dc.date.accessioned | 2021-08-31T14:48:20Z | - |
dc.date.available | 2021-08-31T14:48:20Z | - |
dc.date.created | 2021-06-19 | - |
dc.date.issued | 2020-01 | - |
dc.identifier.issn | 1534-0392 | - |
dc.identifier.uri | https://scholar.korea.ac.kr/handle/2021.sw.korea/58392 | - |
dc.description.abstract | We prove the weak maximum principle for second-order elliptic and parabolic equations in divergence form with the conormal derivative boundary conditions when the lower-order coefficients are unbounded and domains are beyond Lipschitz boundary regularity. In the elliptic case we consider John domains and lower-order coefficients in L-n spaces (a(i) , b(i) is an element of L-q , c is an element of L-q/2, q = n if n >= 3 and q > 2 if n = 2). For the parabolic case, the lower-order coefficients a(i), b(i), and c belong to L-q,L-r spaces (a(i) , b(i) ,vertical bar c vertical bar(1/2) is an element of L-q,L-r with n/q + 2/r <= 1), q E (n, infinity], r is an element of [2, infinity], n >= 2. We also consider coefficients in L-n,L-infinity with a smallness condition for parabolic equations. | - |
dc.language | English | - |
dc.language.iso | en | - |
dc.publisher | AMER INST MATHEMATICAL SCIENCES-AIMS | - |
dc.subject | SOBOLEV EXTENSION | - |
dc.subject | UNIFORM | - |
dc.title | THE WEAK MAXIMUM PRINCIPLE FOR SECOND-ORDER ELLIPTIC AND PARABOLIC CONORMAL DERIVATIVE PROBLEMS | - |
dc.type | Article | - |
dc.contributor.affiliatedAuthor | Kim, Doyoon | - |
dc.identifier.doi | 10.3934/cpaa.2020024 | - |
dc.identifier.scopusid | 2-s2.0-85070772132 | - |
dc.identifier.wosid | 000475504300024 | - |
dc.identifier.bibliographicCitation | COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, v.19, no.1, pp.493 - 510 | - |
dc.relation.isPartOf | COMMUNICATIONS ON PURE AND APPLIED ANALYSIS | - |
dc.citation.title | COMMUNICATIONS ON PURE AND APPLIED ANALYSIS | - |
dc.citation.volume | 19 | - |
dc.citation.number | 1 | - |
dc.citation.startPage | 493 | - |
dc.citation.endPage | 510 | - |
dc.type.rims | ART | - |
dc.type.docType | Article | - |
dc.description.journalClass | 1 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Mathematics | - |
dc.relation.journalWebOfScienceCategory | Mathematics, Applied | - |
dc.relation.journalWebOfScienceCategory | Mathematics | - |
dc.subject.keywordPlus | SOBOLEV EXTENSION | - |
dc.subject.keywordPlus | UNIFORM | - |
dc.subject.keywordAuthor | Weak maximum principle | - |
dc.subject.keywordAuthor | conormal derivative boundary condition | - |
dc.subject.keywordAuthor | John domain | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
(02841) 서울특별시 성북구 안암로 14502-3290-1114
COPYRIGHT © 2021 Korea University. All Rights Reserved.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.