Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

THE WEAK MAXIMUM PRINCIPLE FOR SECOND-ORDER ELLIPTIC AND PARABOLIC CONORMAL DERIVATIVE PROBLEMS

Full metadata record
DC Field Value Language
dc.contributor.authorKim, Doyoon-
dc.contributor.authorRyu, Seungjin-
dc.date.accessioned2021-08-31T14:48:20Z-
dc.date.available2021-08-31T14:48:20Z-
dc.date.created2021-06-19-
dc.date.issued2020-01-
dc.identifier.issn1534-0392-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/58392-
dc.description.abstractWe prove the weak maximum principle for second-order elliptic and parabolic equations in divergence form with the conormal derivative boundary conditions when the lower-order coefficients are unbounded and domains are beyond Lipschitz boundary regularity. In the elliptic case we consider John domains and lower-order coefficients in L-n spaces (a(i) , b(i) is an element of L-q , c is an element of L-q/2, q = n if n >= 3 and q > 2 if n = 2). For the parabolic case, the lower-order coefficients a(i), b(i), and c belong to L-q,L-r spaces (a(i) , b(i) ,vertical bar c vertical bar(1/2) is an element of L-q,L-r with n/q + 2/r <= 1), q E (n, infinity], r is an element of [2, infinity], n >= 2. We also consider coefficients in L-n,L-infinity with a smallness condition for parabolic equations.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherAMER INST MATHEMATICAL SCIENCES-AIMS-
dc.subjectSOBOLEV EXTENSION-
dc.subjectUNIFORM-
dc.titleTHE WEAK MAXIMUM PRINCIPLE FOR SECOND-ORDER ELLIPTIC AND PARABOLIC CONORMAL DERIVATIVE PROBLEMS-
dc.typeArticle-
dc.contributor.affiliatedAuthorKim, Doyoon-
dc.identifier.doi10.3934/cpaa.2020024-
dc.identifier.scopusid2-s2.0-85070772132-
dc.identifier.wosid000475504300024-
dc.identifier.bibliographicCitationCOMMUNICATIONS ON PURE AND APPLIED ANALYSIS, v.19, no.1, pp.493 - 510-
dc.relation.isPartOfCOMMUNICATIONS ON PURE AND APPLIED ANALYSIS-
dc.citation.titleCOMMUNICATIONS ON PURE AND APPLIED ANALYSIS-
dc.citation.volume19-
dc.citation.number1-
dc.citation.startPage493-
dc.citation.endPage510-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMathematics-
dc.relation.journalWebOfScienceCategoryMathematics, Applied-
dc.relation.journalWebOfScienceCategoryMathematics-
dc.subject.keywordPlusSOBOLEV EXTENSION-
dc.subject.keywordPlusUNIFORM-
dc.subject.keywordAuthorWeak maximum principle-
dc.subject.keywordAuthorconormal derivative boundary condition-
dc.subject.keywordAuthorJohn domain-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Science > Department of Mathematics > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE