Improved bounds for the bilinear spherical maximal operators
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Heo, Yaryong | - |
dc.contributor.author | Hong, Sunggeum | - |
dc.contributor.author | Yang, Chan Woo | - |
dc.date.accessioned | 2021-08-31T16:03:08Z | - |
dc.date.available | 2021-08-31T16:03:08Z | - |
dc.date.created | 2021-06-19 | - |
dc.date.issued | 2020 | - |
dc.identifier.issn | 1073-2780 | - |
dc.identifier.uri | https://scholar.korea.ac.kr/handle/2021.sw.korea/58971 | - |
dc.description.abstract | In this paper we study the bilinear multiplier operator of the form H-t(f,g)(x) = integral(Rd)integral(Rd) m(t xi,t eta)e(2 pi it vertical bar(xi,eta)vertical bar)(f) over cap(xi)(g) over cap(eta) e(2 pi ix(xi+eta))d xi d eta, 1 <= t <= 2 where m satisfies the Marcinkiewicz-Mikhlin-Hormander's derivative conditions. And by obtaining some estimates for H-t , we establish the L-P1 ( R-d ) x L-P2 ( R-d ) -> L-P( R-d) estimates for the bi(sub)- linear spherical maximal operators M (f,g)(x) = sup(t>0 )vertical bar integral(S2d-1 )f (x - ty) g(x - tz) d sigma(2d)(y, z)vertical bar which was considered by Barrionevo et al in [1], here sigma(2d) denotes the surface measure on the unit sphere S2d-1 . In order to investigate M we use the asymptotic expansion of the Fourier transform of the surface measure sigma(2)(d) and study the related bilinear multiplier operator H-t (f, g). To treat the bad behavior of the term e(2 pi it vertical bar(xi,eta)vertical bar) in H-t , we rewrite e(2)(pi it vertical bar(xi,eta)vertical bar) as the summation of e2 pi it root n(2)+vertical bar eta vertical bar(2)a(N)(t xi,t eta)'s where N's are positive integers, a(N)(xi,eta) satisfies the Marcinkiewicz-Mikhlin-Hormander condition in eta, and supp(a(N) (., eta)) subset of{xi : N <= vertical bar xi vertical bar<N+ 1}. By using these decompositions, we significantly improve the results of Barrionevo et al in [1]. | - |
dc.language | English | - |
dc.language.iso | en | - |
dc.publisher | INT PRESS BOSTON, INC | - |
dc.title | Improved bounds for the bilinear spherical maximal operators | - |
dc.type | Article | - |
dc.contributor.affiliatedAuthor | Heo, Yaryong | - |
dc.contributor.affiliatedAuthor | Yang, Chan Woo | - |
dc.identifier.scopusid | 2-s2.0-85091075606 | - |
dc.identifier.wosid | 000540233200004 | - |
dc.identifier.bibliographicCitation | MATHEMATICAL RESEARCH LETTERS, v.27, no.2, pp.397 - 434 | - |
dc.relation.isPartOf | MATHEMATICAL RESEARCH LETTERS | - |
dc.citation.title | MATHEMATICAL RESEARCH LETTERS | - |
dc.citation.volume | 27 | - |
dc.citation.number | 2 | - |
dc.citation.startPage | 397 | - |
dc.citation.endPage | 434 | - |
dc.type.rims | ART | - |
dc.type.docType | Article | - |
dc.description.journalClass | 1 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Mathematics | - |
dc.relation.journalWebOfScienceCategory | Mathematics | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
(02841) 서울특별시 성북구 안암로 14502-3290-1114
COPYRIGHT © 2021 Korea University. All Rights Reserved.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.