Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Rheological behavior and IPL sintering properties of conductive nano copper ink using ink-jet printing

Full metadata record
DC Field Value Language
dc.contributor.authorLee, Jae-Young-
dc.contributor.authorLee, Do Kyeong-
dc.contributor.authorNahm, Sahn-
dc.contributor.authorChoi, Jung-Noon-
dc.contributor.authorHwang, Kwang-Taek-
dc.contributor.authorKim, Jin-Ho-
dc.date.accessioned2021-08-31T16:17:57Z-
dc.date.available2021-08-31T16:17:57Z-
dc.date.created2021-06-18-
dc.date.issued2020-
dc.identifier.issn1225-1429-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/59090-
dc.description.abstractThe printed electronics field using ink-jet printing technology is in the spotlight as a next-generation technology, especially ink-jet 3D printing, which can simultaneously discharge and precisely control various ink materials, has been actively researched in recent years. In this study, complex structure of an insulating layer and a conductive layer was fabricated with photo-curable silica ink and PVP-added Cu nano ink using ink-jet 3D printing technology. A precise photo-cured silica insulating layer was designed by optimizing the printing conditions and the rheological properties of the ink, and the resistance of the insulating layer was 2.43 x 10(13) Omega.cm. On the photo-cured silica insulating layer, a Cu conductive layer was printed by controlling droplet distance. The sintering of the PVP-added nano Cu ink was performed using an IPL flash sintering process, and electrical and mechanical properties were confirmed according to the annealing temperature and applied voltage. Finally, it was confirmed that the resistance of the PVP-added Cu conductive layer was very low as 29 mu Omega.cm under 100 degrees C annealing temperature and 700 V of IPL applied voltage, and the adhesion to the photo-cured silica insulating layer was very good.-
dc.languageKorean-
dc.language.isoko-
dc.publisherKOREAN ASSOC CRYSTAL GROWTH, INC-
dc.subject3D-
dc.subjectPHOTOPOLYMERIZATION-
dc.subjectCOMPOSITES-
dc.subjectLIGHT-
dc.titleRheological behavior and IPL sintering properties of conductive nano copper ink using ink-jet printing-
dc.typeArticle-
dc.contributor.affiliatedAuthorNahm, Sahn-
dc.identifier.doi10.6111/JKCGCT.2020.30.5.174-
dc.identifier.wosid000600280000003-
dc.identifier.bibliographicCitationJOURNAL OF THE KOREAN CRYSTAL GROWTH AND CRYSTAL TECHNOLOGY, v.30, no.5, pp.174 - 182-
dc.relation.isPartOfJOURNAL OF THE KOREAN CRYSTAL GROWTH AND CRYSTAL TECHNOLOGY-
dc.citation.titleJOURNAL OF THE KOREAN CRYSTAL GROWTH AND CRYSTAL TECHNOLOGY-
dc.citation.volume30-
dc.citation.number5-
dc.citation.startPage174-
dc.citation.endPage182-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.identifier.kciidART002639486-
dc.description.journalClass2-
dc.description.journalRegisteredClasskci-
dc.relation.journalResearchAreaCrystallography-
dc.relation.journalWebOfScienceCategoryCrystallography-
dc.subject.keywordPlus3D-
dc.subject.keywordPlusPHOTOPOLYMERIZATION-
dc.subject.keywordPlusCOMPOSITES-
dc.subject.keywordPlusLIGHT-
dc.subject.keywordAuthorInk-jet 3D printing-
dc.subject.keywordAuthorIPL flashing sintering-
dc.subject.keywordAuthorRheological properties-
dc.subject.keywordAuthorPhoto-curable silica ink-
dc.subject.keywordAuthorPVP-added nano Cu ink-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE