Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Optimization of tunable guided-mode resonance filter based on refractive index modulation of graphene

Authors
Lee, Hwa-SeubKwak, Joon YoungSeong, Tae-YeonHwang, Gyu WeonKim, Won MokKim, InhoLee, Kyeong-Seok
Issue Date
27-12월-2019
Publisher
NATURE PUBLISHING GROUP
Citation
SCIENTIFIC REPORTS, v.9
Indexed
SCIE
SCOPUS
Journal Title
SCIENTIFIC REPORTS
Volume
9
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/60870
DOI
10.1038/s41598-019-56194-4
ISSN
2045-2322
Abstract
To fabricate a tunable optical filter with a fast response in the near infrared region, a tunable guided-mode resonance (GMR) filter using graphene was proposed and its performance was optimized. In this study, a rigorous coupled wave analysis method was employed to systematically investigate the effects of geometrical configuration of graphene-integrated GMR filters and the optical properties of constituent materials including graphene on their spectral response in terms of tunability and extinction ratio. It was found that as the graphene is located close to the waveguide and the evanescent-field strength at the interface increases, the GMR filter exhibits better tunability. The bandwidth of the filter could be drastically reduced by adopting a low-index contrast grating layer, so that the extinction ratio of an optical signal could be greatly improved from 0.91 dB to 27.99 dB as the index contrast decreased from 0.99 to 0.47, respectively. Furthermore, new practical device designs, that is easy to fabricate and effectively implement the electric-field doping of graphene at low gate voltage, were also suggested and theoretically validated. These results demonstrate not only the excellent potential of a graphene-based tunable GMR filter but also provide practical design guidelines for optimizing the device performance.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher SEONG, TAE YEON photo

SEONG, TAE YEON
공과대학 (신소재공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE