Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Computational Study on the Steady Loading Noise of Drone Propellers: Noise Source Modeling with the Lattice Boltzmann Method

Full metadata record
DC Field Value Language
dc.contributor.authorPark, Chun Hyuk-
dc.contributor.authorKim, Dae Han-
dc.contributor.authorMoon, Young J.-
dc.date.accessioned2021-08-31T22:47:04Z-
dc.date.available2021-08-31T22:47:04Z-
dc.date.created2021-06-18-
dc.date.issued2019-12-
dc.identifier.issn2093-274X-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/61418-
dc.description.abstractIn the present study, a new computational methodology is explored to compute the acoustic field of drone propellers using noise source modeling with the lattice Boltzmann method. A simple mathematical model of steady loading noise for predicting the blade passing frequency (BPF) tone and harmonics at low frequencies (100-1000 Hz) is proposed and tested for various types of drone propellers. The computed result is in a reasonably good agreement with NASA's measured sound pressure level (SPL) for APC-SF and DJI-CF two-blade single drone propellers rotating at 3600-6000 revolutions per minute. It replicates well the feature of an even number of BPF harmonics for the tested model propellers, showing the decaying slope of -for the first two BPF and harmonic peaks in the SPL spectrum. Notably, the proposed steady loading noise model shows all components of RPS harmonics with different magnitudes for different blade sizes and rotor arrangements, such as tricopter and quadcopter. The proposed method can be used for predicting and analyzing tones at low frequencies for various types of open rotor systems, such as multicopters and distributed electric propulsion vehicles.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherSPRINGER-
dc.titleComputational Study on the Steady Loading Noise of Drone Propellers: Noise Source Modeling with the Lattice Boltzmann Method-
dc.typeArticle-
dc.contributor.affiliatedAuthorMoon, Young J.-
dc.identifier.doi10.1007/s42405-019-00177-2-
dc.identifier.scopusid2-s2.0-85074902917-
dc.identifier.wosid000495115400004-
dc.identifier.bibliographicCitationINTERNATIONAL JOURNAL OF AERONAUTICAL AND SPACE SCIENCES, v.20, no.4, pp.858 - 869-
dc.relation.isPartOfINTERNATIONAL JOURNAL OF AERONAUTICAL AND SPACE SCIENCES-
dc.citation.titleINTERNATIONAL JOURNAL OF AERONAUTICAL AND SPACE SCIENCES-
dc.citation.volume20-
dc.citation.number4-
dc.citation.startPage858-
dc.citation.endPage869-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.identifier.kciidART002531686-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.description.journalRegisteredClasskci-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalWebOfScienceCategoryEngineering, Aerospace-
dc.subject.keywordAuthorDrone propeller noise-
dc.subject.keywordAuthorComputational aeroacoustics-
dc.subject.keywordAuthorSteady loading noise source modeling-
dc.subject.keywordAuthorLattice Boltzmann method-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Mechanical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE