Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Development of Practical Design Approaches for Water Distribution Systems

Authors
Choi, Young HwanLee, Ho MinChoi, JihoYoo, Do GuenKim, Joong Hoon
Issue Date
12월-2019
Publisher
MDPI
Keywords
practical design approach; water distribution systems; multi-objective optimization; improved efficiency and effect
Citation
APPLIED SCIENCES-BASEL, v.9, no.23
Indexed
SCIE
SCOPUS
Journal Title
APPLIED SCIENCES-BASEL
Volume
9
Number
23
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/61483
DOI
10.3390/app9235117
ISSN
2076-3417
Abstract
The optimal design of water distribution systems (WDSs) should be economical, consider practical field applicability, and satisfy hydraulic constraints such as nodal pressure and flow velocity. However, the general optimal design of a WDSs approach using a metaheuristic algorithm was difficult to apply for achieving pipe size continuity at the confluence point. Although some studies developed the design approaches considering the pipe continuity, these approaches took many simulation times. For these reasons, this study improves the existing pipe continuity search method by reducing the computation time and enhancing the ability to handle pipe size continuity at complex joints that have more than three nodes. In addition to more practical WDSs designs, the approach considers various system design factors simultaneously in a multi-objective framework. To verify the proposed approach, the three well-known WDSs to apply WDS design problems are applied, and the results are compared with the previous design method, which used a pipe continuity research algorithm. This study can reduce the computation time by 87% and shows an ability to handle complex joints. Finally, the application of this practical design technique, which considers pipe continuity and multiple design factors, can reduce the gap between the theoretical design and the real world because it considers construction conditions and abnormal situations.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Civil, Environmental and Architectural Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE