Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Enhanced Energy Harvesting Using Multilayer Piezoelectric Ceramics

Full metadata record
DC Field Value Language
dc.contributor.authorPatel, Satyanarayan-
dc.contributor.authorSeo, In-Tae-
dc.contributor.authorNahm, Sahn-
dc.date.accessioned2021-09-01T01:28:13Z-
dc.date.available2021-09-01T01:28:13Z-
dc.date.created2021-06-18-
dc.date.issued2019-11-
dc.identifier.issn0361-5235-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/62107-
dc.description.abstractIn this work, multi-layer ceramics (MLC) are fabricated for vibrational energy harvesting using 0.5 mol.% CuO added 0.69Pb(Zr0.47Ti0.53)O-3-0.31Pb(Zn0.4Ni0.6)(1/3)Nb2/3O3 (0.5CPZT-PZNN). 0.5CPZT-PZNN has a high transduction coefficient of 20,367 m(2)/N with a high Curie temperature of 300 degrees C. The effect of the number of layers (n-layers = 1, 3, 5 and 7) on the active power density is systematically investigated. MLC-based piezoelectric energy harvesting (PEH) can increase the active power output by approximately 2.5 times as compared to bulk PEH (n = 1). For the bulk ceramic, PEH active power density is found to be 21 mW/cm(3) , whereas maximum active power density is obtained for n = 5 (49.7 mW/cm(3)). However, upon increasing layers (n = 7), active power density is decreased due to high capacitance. The result shows that the MLC-based PEH can increase output current/voltage and decrease the matching resistive load. In addition, effect of the load resistance on the voltage, current and active power density is also discussed. Finally, a comparison of various piezoelectric material based power output in MLC-system has been also presented.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherSPRINGER-
dc.subjectPOWER-
dc.subjectCIRCUIT-
dc.titleEnhanced Energy Harvesting Using Multilayer Piezoelectric Ceramics-
dc.typeArticle-
dc.contributor.affiliatedAuthorNahm, Sahn-
dc.identifier.doi10.1007/s11664-019-07501-2-
dc.identifier.scopusid2-s2.0-85070381509-
dc.identifier.wosid000488962300011-
dc.identifier.bibliographicCitationJOURNAL OF ELECTRONIC MATERIALS, v.48, no.11-
dc.relation.isPartOfJOURNAL OF ELECTRONIC MATERIALS-
dc.citation.titleJOURNAL OF ELECTRONIC MATERIALS-
dc.citation.volume48-
dc.citation.number11-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.subject.keywordPlusPOWER-
dc.subject.keywordPlusCIRCUIT-
dc.subject.keywordAuthorPiezoelectrics-
dc.subject.keywordAuthormultilayer-
dc.subject.keywordAuthorenergy harvesting-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE