Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

XQ-SR: Joint x-q space super-resolution with application to infant diffusion MRI

Full metadata record
DC Field Value Language
dc.contributor.authorChen, Geng-
dc.contributor.authorDong, Bin-
dc.contributor.authorZhang, Yong-
dc.contributor.authorLin, Weili-
dc.contributor.authorShen, Dinggang-
dc.contributor.authorYap, Pew-Thian-
dc.date.accessioned2021-09-01T05:09:45Z-
dc.date.available2021-09-01T05:09:45Z-
dc.date.created2021-06-18-
dc.date.issued2019-10-
dc.identifier.issn1361-8415-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/62764-
dc.description.abstractDiffusion MRI (DMRI) is a powerful tool for studying early brain development and disorders. However, the typically low spatio-angular resolution of DMRI diminishes structural details and limits quantitative analysis to simple diffusion models. This problem is aggravated for infant DMRI since (i) the infant brain is significantly smaller than that of an adult, demanding higher spatial resolution to capture subtle structures; and (ii) the typically limited scan time of unsedated infants poses significant challenges to DMRI acquisition with high spatio-angular resolution. Post-acquisition super-resolution (SR) is an important alternative for increasing the resolution of DMRI data without prolonging acquisition times. However, most existing methods focus on the SR of only either the spatial domain (x-space) or the diffusion wavevector domain (q-space). For more effective resolution enhancement, we propose a framework for joint SR in both spatial and wavevector domains. More specifically, we first establish the signal relationships in x-q space using a robust neighborhood matching technique. We then harness the signal relationships to regularize the ill-posed inverse problem associated with the recovery of high-resolution data from their low-resolution counterpart. Extensive experiments on synthetic, adult, and infant DMRI data demonstrate that our method is able to recover high-resolution DMRI data with remarkably improved quality. (C) 2019 Elsevier B.V. All rights reserved.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherELSEVIER-
dc.subjectWHITE-MATTER-
dc.subjectMODEL-
dc.titleXQ-SR: Joint x-q space super-resolution with application to infant diffusion MRI-
dc.typeArticle-
dc.contributor.affiliatedAuthorShen, Dinggang-
dc.identifier.doi10.1016/j.media.2019.06.010-
dc.identifier.scopusid2-s2.0-85068228232-
dc.identifier.wosid000487566900004-
dc.identifier.bibliographicCitationMEDICAL IMAGE ANALYSIS, v.57, pp.44 - 55-
dc.relation.isPartOfMEDICAL IMAGE ANALYSIS-
dc.citation.titleMEDICAL IMAGE ANALYSIS-
dc.citation.volume57-
dc.citation.startPage44-
dc.citation.endPage55-
dc.type.rimsART-
dc.type.docTypeArticle; Proceedings Paper-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaRadiology, Nuclear Medicine & Medical Imaging-
dc.relation.journalWebOfScienceCategoryComputer Science, Artificial Intelligence-
dc.relation.journalWebOfScienceCategoryComputer Science, Interdisciplinary Applications-
dc.relation.journalWebOfScienceCategoryEngineering, Biomedical-
dc.relation.journalWebOfScienceCategoryRadiology, Nuclear Medicine & Medical Imaging-
dc.subject.keywordPlusWHITE-MATTER-
dc.subject.keywordPlusMODEL-
dc.subject.keywordAuthorDiffusion MRI-
dc.subject.keywordAuthorSuper resolution-
dc.subject.keywordAuthorNeighborhood matching-
dc.subject.keywordAuthorRegularization-
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Artificial Intelligence > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE