Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Two Different Length-Dependent Regimes in Thermoelectric Large-Area Junctions of n-Alkanethiolates

Authors
Park, SohyunCho, NayoungYoon, Hyo Jae
Issue Date
13-8월-2019
Publisher
AMER CHEMICAL SOC
Citation
CHEMISTRY OF MATERIALS, v.31, no.15, pp.5973 - 5980
Indexed
SCIE
SCOPUS
Journal Title
CHEMISTRY OF MATERIALS
Volume
31
Number
15
Start Page
5973
End Page
5980
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/63531
DOI
10.1021/acs.chemmater.9b02461
ISSN
0897-4756
Abstract
Molecular thermoelectrics is relatively unexplored compared with its analogous research field, molecular electronics. This is surprising considering that the two research fields share an identical energy landscape across molecular junctions and similar quantum-chemical mechanisms. This paper describes the length dependence of thermopower in self-assembled monolayers comprising structurally simple wide band gap molecules, n-alkanethiolates (SCn; n = 2, 4, 6, 8, 10, 12, 14, 16, 18) chemisorbed on gold. Thermovoltage measurements at zero bias have enabled the determination of the Seebeck coefficient of n-alkanethiolates for the first time. A plot of the Seebeck coefficient versus the length of the n-alkane chain reveals the presence of two different length-dependent regimes. The rate of the decrease of the Seebeck coefficient as the molecular length increases changes at SC10 from -0.54 to -0.10 mu V(K.n(C))(-1). The theoretically proposed presence of metal-induced gap states (MIGS) in the short but not in the long n-alkanethiolates accounts for the two observed length-dependent regimes. Owing to the length dependence of the transmission function coefficient of MIGS in short n-alkanethiolates, the Seebeck coefficient decreases linearly as the length increases. The nearly zero rate of decrease in the long n-alkanethiolates mirrors the insignificant MIGS in the long n-alkanethiolates.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Science > Department of Chemistry > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher YOON, Hyo Jae photo

YOON, Hyo Jae
이과대학 (화학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE