Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Tumor Homing Reactive Oxygen Species Nanoparticle for Enhanced Cancer Therapy

Authors
Cho, Hyeon-YeolMavi, AhmetChueng, Sy-Tsong DeanPongkulapa, ThanapatPasquale, NicholasRabie, HudifahHan, JiyouKim, Jong HoonKim, Tae-HyungChoi, Jeong-WooLee, Ki-Bum
Issue Date
10-7월-2019
Publisher
AMER CHEMICAL SOC
Keywords
nanotechnology; magnetic core-shell nanoparticles; cancer therapy; reactive species; tumor targeting
Citation
ACS APPLIED MATERIALS & INTERFACES, v.11, no.27, pp.23909 - 23918
Indexed
SCIE
SCOPUS
Journal Title
ACS APPLIED MATERIALS & INTERFACES
Volume
11
Number
27
Start Page
23909
End Page
23918
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/64120
DOI
10.1021/acsami.9b07483
ISSN
1944-8244
Abstract
Multifunctional nanoparticles that carry chemotherapeutic agents can be innovative anticancer therapeutic options owing to their tumor-targeting ability and high drug loading capacity. However, the nonspecific release of toxic DNA-intercalating anticancer drugs from the nanoparticles has significant side effects on healthy cells surrounding the tumors. Herein, we report a tumor homing reactive oxygen species nanoparticle (THoR-NP) platform that is highly effective and selective for ablating malignant tumors. Sodium nitroprusside (SNP) and diethyldithiocarbamate (DDC) were selected as an exogenous reactive oxygen species (ROS) generator and a superoxide dismutase 1 inhibitor, respectively. DDC-loaded THoR-NP, in combination with SNP treatment, eliminated multiple cancer cell lines effectively by the generation of peroxynitrite in the cells (>95% cell death), as compared to control drug treatments of the same concentration of DDC or SNP alone (0% cell death). Moreover, the magnetic core (ZnFe2O4) of the THoR-NP can specifically ablate tumor cells (breast cancer cells) via magnetic hyperthermia, in conjunction with DDC, even in the absence of any exogenous RS supplements. Finally, by incorporating iRGD peptide moieties in the THoR-NP, integrin-enriched cancer cells (malignant tumors, MDA-MB-231) were effectively and selectively killed, as opposed to nonmetastatic tumors (MCF-7), as confirmed in a mouse xenograft model. Hence, our strategy of using nanoparticles embedded with ROS-scavenger-inhibitor with an exogenous ROS supplement is highly selective and effective cancer therapy.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Biotechnology > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE