Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

sGDML: Constructing accurate and data efficient molecular force fields using machine learning

Full metadata record
DC Field Value Language
dc.contributor.authorChmiela, Stefan-
dc.contributor.authorSauceda, Huziel E.-
dc.contributor.authorPoltavsky, Igor-
dc.contributor.authorMueller, Klaus-Robert-
dc.contributor.authorTkatchenko, Alexandre-
dc.date.accessioned2021-09-01T12:51:28Z-
dc.date.available2021-09-01T12:51:28Z-
dc.date.created2021-06-19-
dc.date.issued2019-07-
dc.identifier.issn0010-4655-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/64240-
dc.description.abstractWe present an optimized implementation of the recently proposed symmetric gradient domain machine learning (sGDML) model. The sGDML model is able to faithfully reproduce global potential energy surfaces (PES) for molecules with a few dozen atoms from a limited number of user-provided reference molecular conformations and the associated atomic forces. Here, we introduce a Python software package to reconstruct and evaluate custom sGDML force fields (FFs), without requiring in-depth knowledge about the details of the model. A user-friendly command-line interface offers assistance through the complete process of model creation, in an effort to make this novel machine learning approach accessible to broad practitioners. Our paper serves as a documentation, but also includes a practical application example of how to reconstruct and use a PBEO+MBD FF for paracetamol. Finally, we show how to interface 5GDML with the FF simulation engines ASE (Larsen et al., 2017) and i-PI (Kapil et al., 2019) to run numerical experiments, including structure optimization, classical and path integral molecular dynamics and nudged elastic band calculations. (C) 2019 The Author(s). Published by Elsevier B.V.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherELSEVIER SCIENCE BV-
dc.subjectPOTENTIALS-
dc.subjectMODEL-
dc.titlesGDML: Constructing accurate and data efficient molecular force fields using machine learning-
dc.typeArticle-
dc.contributor.affiliatedAuthorMueller, Klaus-Robert-
dc.identifier.doi10.1016/j.cpc.2019.02.007-
dc.identifier.scopusid2-s2.0-85062624346-
dc.identifier.wosid000474312900005-
dc.identifier.bibliographicCitationCOMPUTER PHYSICS COMMUNICATIONS, v.240, pp.38 - 45-
dc.relation.isPartOfCOMPUTER PHYSICS COMMUNICATIONS-
dc.citation.titleCOMPUTER PHYSICS COMMUNICATIONS-
dc.citation.volume240-
dc.citation.startPage38-
dc.citation.endPage45-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryComputer Science, Interdisciplinary Applications-
dc.relation.journalWebOfScienceCategoryPhysics, Mathematical-
dc.subject.keywordPlusPOTENTIALS-
dc.subject.keywordPlusMODEL-
dc.subject.keywordAuthorMachine learning potential-
dc.subject.keywordAuthorMachine learning force field-
dc.subject.keywordAuthorAb initio molecular dynamics-
dc.subject.keywordAuthorPath integral molecular dynamics-
dc.subject.keywordAuthorCoupled cluster calculations-
dc.subject.keywordAuthorMolecular property prediction-
dc.subject.keywordAuthorQuantum chemistry-
dc.subject.keywordAuthorGradient domain machine learning-
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Artificial Intelligence > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE