Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Performance of dry water- and porous carbon-based sorbents for carbon dioxide capture

Authors
Al-Wabel, MohammadElfaki, JamalUsman, AdelHussain, QaiserOk, Yong Sik
Issue Date
7월-2019
Publisher
ACADEMIC PRESS INC ELSEVIER SCIENCE
Keywords
Dry water; Activated carbon; Partition coefficient; Gas adsorbent; Biochar; CO2 adsorption
Citation
ENVIRONMENTAL RESEARCH, v.174, pp.69 - 79
Indexed
SCIE
SCOPUS
Journal Title
ENVIRONMENTAL RESEARCH
Volume
174
Start Page
69
End Page
79
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/64687
DOI
10.1016/j.envres.2019.04.020
ISSN
0013-9351
Abstract
Carbon dioxide is the primary greenhouse gas that has a strong impact on global warming. Several technologies have been developed for capturing CO2 to mitigate the greenhouse effect. The objective of this research was to investigate the performance of several sorbents based on dry water and porous carbon materials for capturing CO2. Seven sorbents were prepared and comparatively evaluated for their CO2 capture capabilities: (i) Conocarpus biochar (CBC); (ii) commercial activated carbon (CAC); (iii) normal dry water (NDW); (iv) K2CO3-treated CBC (TCBC); (v) K2CO3-modified dry water (MDW); (vi) MDW and 2% TCBC (MDWTCBC); and (vii) MDW and 2% activated carbon (MDWCAC). The sorption process was carried out with initial CO2 concentration of 5.7%, temperature of 25 degrees C, feed gas flow rate of 0.51 min(-1) and a pressure of 1.0 bar. The pure CO2 was mixed with O-2 or N-2 to achieve the desired inlet concentration of CO2. The CO2 adsorption capacity and partition coefficient (PC) of the tested sorbents were evaluated at 5% and 100% breakthrough (BT). The results showed a longer breakthrough and equilibrium adsorption times for CO2 when mixed with N-2 than with O-2. Among all sorbents, both CAC and CBC showed enhanced CO2 capture performance with equilibrium (100% BT) adsorption capacities of 239 and 197 mg g(-1), respectively (in terms of PC: 1.0 x 10(-3) and 7.9 x 10(-4) mol kg(-1) Pa-1, respectively). In contrast, the performance of TCBC and the dry water-based sorbents was far lower than CAC or CBC. The CO2 adsorption data fitted well to the non-linearized form of the pseudo-first-order kinetic model. The Fourier-transform infrared spectral patterns indicated that the reaction of CO2 molecules with the hydroxyl groups of sorbents is possible through the formation of chemisorbed CO2 species. It could be concluded that the activation process did not play a role in increasing the CO2 capture performance in order to form new active sorption sites. However, Conocarpus biochar can be used as efficient sorbent for CO2 capture with a better performance than other materials tested previously (e.g., activated carbon).
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Life Sciences and Biotechnology > Division of Environmental Science and Ecological Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE