Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Exogenous CLASP2 protein treatment enhances wound healing in vitro and in vivo

Full metadata record
DC Field Value Language
dc.contributor.authorKim, MiJung-
dc.contributor.authorLee, You-Sun-
dc.contributor.authorYoo, Yun-Mi-
dc.contributor.authorChoi, Jong-Jin-
dc.contributor.authorKim, Ha-Na-
dc.contributor.authorKang, Changhee-
dc.contributor.authorYu, Ji-Min-
dc.contributor.authorMoon, Sung-Hwan-
dc.contributor.authorKim, Aeri-
dc.contributor.authorKim, Chan-Wha-
dc.date.accessioned2021-09-01T13:34:37Z-
dc.date.available2021-09-01T13:34:37Z-
dc.date.created2021-06-18-
dc.date.issued2019-07-
dc.identifier.issn1067-1927-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/64703-
dc.description.abstractProliferative and migratory abilities of fibroblasts are essential for wound healing at the skin surface. Cytoplasmic linker-associated protein-2 (CLASP2) was originally found to interact with cytoplasmic linker protein (CLIP)-170. CLASP2 plays an important role in microtubule stabilization and the microtubule-stabilizing activity of CLASP2 depends on its interactions with end binding (EB)-1 and CLIP-170. Although the microtubule-stabilizing role of CLASP2 is well established, the effects of CLASP2 on the migration and proliferation of fibroblasts remain unclear in the context of wound healing. Therefore, we tested the utilization of CLASP2 as a directly applied protein drug to improve wound healing by promoting the migration of effector cells, including skin fibroblasts, to the site of repair or injury using an in vivo excisional wound mouse model and in vitro Hs27 skin fibroblast model. Epidermal growth factor, which is a recognized contributor to cell proliferation and migration, was used as positive control. In vitro and in vivo, CLASP2 treatment significantly enhanced cell migration and accelerated wound closure. Furthermore, in vivo, the CLASP2-treated animal group displayed enhanced epidermal repair and collagen deposition. Next, we studied the mechanism of CLASP2 for wound healing. Increasing the abundance of intracellular free CLASP2 in skin fibroblasts by supplying exogenous CLASP2 seemed to stabilize microtubules through an interaction between CLASP2 and CLIP-170, as well as EB1. Exogenous CLASP2 also showed direct binding with IQGAP1, increasing both cyclic adenosine monophosphate activity and phosphorylation of glycogen synthase kinase 3 beta, which in turn reinstated the binding between free CLASP2 and IQGAP1. In summary, exogenous CLASP2 increased Hs27 skin fibroblast migration by interacting with IQGAP1 and other cytoskeletal linker proteins, such as CLIP-170 and EB1. Our results strongly suggest that CLASP2 can be developed in wound healing drugs for skin repair and/or regenerating cosmetic products.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherWILEY-
dc.subjectMICROTUBULE PLUS-END-
dc.subjectEPIDERMAL-GROWTH-FACTOR-
dc.subjectSTEM-CELLS-
dc.subjectCONDITIONED MEDIUM-
dc.subjectFIBROBLAST-
dc.subjectMIGRATION-
dc.subjectDYNAMICS-
dc.subjectIQGAP1-
dc.subjectCDC42-
dc.subjectRAC1-
dc.titleExogenous CLASP2 protein treatment enhances wound healing in vitro and in vivo-
dc.typeArticle-
dc.contributor.affiliatedAuthorKim, Chan-Wha-
dc.identifier.doi10.1111/wrr.12713-
dc.identifier.scopusid2-s2.0-85064008439-
dc.identifier.wosid000474297400005-
dc.identifier.bibliographicCitationWOUND REPAIR AND REGENERATION, v.27, no.4, pp.345 - 359-
dc.relation.isPartOfWOUND REPAIR AND REGENERATION-
dc.citation.titleWOUND REPAIR AND REGENERATION-
dc.citation.volume27-
dc.citation.number4-
dc.citation.startPage345-
dc.citation.endPage359-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaCell Biology-
dc.relation.journalResearchAreaDermatology-
dc.relation.journalResearchAreaResearch & Experimental Medicine-
dc.relation.journalResearchAreaSurgery-
dc.relation.journalWebOfScienceCategoryCell Biology-
dc.relation.journalWebOfScienceCategoryDermatology-
dc.relation.journalWebOfScienceCategoryMedicine, Research & Experimental-
dc.relation.journalWebOfScienceCategorySurgery-
dc.subject.keywordPlusMICROTUBULE PLUS-END-
dc.subject.keywordPlusEPIDERMAL-GROWTH-FACTOR-
dc.subject.keywordPlusSTEM-CELLS-
dc.subject.keywordPlusCONDITIONED MEDIUM-
dc.subject.keywordPlusFIBROBLAST-
dc.subject.keywordPlusMIGRATION-
dc.subject.keywordPlusDYNAMICS-
dc.subject.keywordPlusIQGAP1-
dc.subject.keywordPlusCDC42-
dc.subject.keywordPlusRAC1-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Life Sciences and Biotechnology > Division of Life Sciences > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE