Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Hierarchical Zn1.67Mn1.33O4/graphene nanoaggregates as new anode material for lithium-ion batteries

Authors
Lee, Jae-WanSeo, Seung-DeokKim, Dong-Wan
Issue Date
4월-2019
Publisher
WILEY
Keywords
cubic spinel structure anode; lithium-ion batteries; nanoaggregates; transition metal oxide; Zn1.67Mn1.33O4/graphene
Citation
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, v.43, no.5, pp.1735 - 1746
Indexed
SCIE
SCOPUS
Journal Title
INTERNATIONAL JOURNAL OF ENERGY RESEARCH
Volume
43
Number
5
Start Page
1735
End Page
1746
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/66460
DOI
10.1002/er.4381
ISSN
0363-907X
Abstract
Cubic spinel type Zn1.67Mn1.33O4 porous sub-micro spheres were synthesized by the calcination of solvothermally prepared ZnxMn1 - xCO3 precursor powders and evaluated as new anode materials for Li-ion batteries for the first time. Each sphere exhibited aggregated morphology, constructed entirely from nanoparticles with a primary particle size of 11 nm. Electrochemical investigations and ex-situ transmission electron microscopy analyses revealed that the reaction mechanism of obtained Zn1.67Mn1.33O4 nanoaggregates is the combined conversion and alloying reaction, similar to that of ZnMn2O4 systems. In favor of the uniform porous sphere structure, these resulting Zn1.67Mn1.33O4 nanoaggregates enabled the mitigation of volume change upon cycling. In addition, graphene composites with Zn1.67Mn1.33O4 nanoaggregates were fabricated to improve electrical conductivity, simply by adding graphenes during solvothermal reaction for the formation of ZnxMn1 - xCO3 precursors. Zn1.67Mn1.33O4/graphene composites showed a capacity of 670 mA h g(-1) higher than that of pure Zn1.67Mn1.33O4 (518 mA h g(-1)) after 200 cycle at a current density of 100 mA g(-1).
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Civil, Environmental and Architectural Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE