Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Biological conversion of methane to methanol through genetic reassembly of native catalytic domains

Full metadata record
DC Field Value Language
dc.contributor.authorKim, Hyun Jin-
dc.contributor.authorHuh, June-
dc.contributor.authorKwon, Young Wan-
dc.contributor.authorPark, Donghyun-
dc.contributor.authorYu, Yeonhwa-
dc.contributor.authorJang, Young Eun-
dc.contributor.authorLee, Bo-Ram-
dc.contributor.authorJo, Eunji-
dc.contributor.authorLee, Eun Jung-
dc.contributor.authorHeo, Yunseok-
dc.contributor.authorLee, Weontae-
dc.contributor.authorLee, Jeewon-
dc.date.accessioned2021-09-01T16:58:25Z-
dc.date.available2021-09-01T16:58:25Z-
dc.date.created2021-06-19-
dc.date.issued2019-04-
dc.identifier.issn2520-1158-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/66471-
dc.description.abstractMethane monooxygenase (MMO), which exists in particulate (pMMO) or soluble forms (sMMO) in methanotrophic bacteria, is an industrially promising enzyme that catalyses oxidation of low-reactive methane and other carbon feedstocks into methanol and their corresponding oxidation products. However, the simple, fast and high-yield production of functionally active MMO, which has so far been unsuccessful despite diverse approaches based on either native methanotroph culture or recombinant expression systems, remains a major challenge for its industrial applications. Here we developed pMMO-mimetic catalytic protein constructs by genetically encoding the beneficial reassembly of catalytic domains of pMMO on apoferritin as a biosynthetic scaffold. This approach resulted in high-yield synthesis of stable and soluble protein constructs in Escherichia coli, which successfully retain enzymatic activity for methanol production with a turnover number comparable to that of native pMMO.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherNATURE PUBLISHING GROUP-
dc.subjectMETHYLOCOCCUS-CAPSULATUS BATH-
dc.subjectMONOOXYGENASE PMMO-
dc.subjectCRYSTAL-STRUCTURE-
dc.subjectENZYME IMMOBILIZATION-
dc.subjectHUMAN FERRITIN-
dc.subjectACTIVE-SITE-
dc.subjectIN-VIVO-
dc.subjectOXIDATION-
dc.subjectPROTEIN-
dc.subjectCOPPER-
dc.titleBiological conversion of methane to methanol through genetic reassembly of native catalytic domains-
dc.typeArticle-
dc.contributor.affiliatedAuthorHuh, June-
dc.contributor.affiliatedAuthorKwon, Young Wan-
dc.contributor.affiliatedAuthorLee, Jeewon-
dc.identifier.doi10.1038/s41929-019-0255-1-
dc.identifier.scopusid2-s2.0-85063758112-
dc.identifier.wosid000464248600014-
dc.identifier.bibliographicCitationNATURE CATALYSIS, v.2, no.4, pp.342 - 353-
dc.relation.isPartOfNATURE CATALYSIS-
dc.citation.titleNATURE CATALYSIS-
dc.citation.volume2-
dc.citation.number4-
dc.citation.startPage342-
dc.citation.endPage353-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.subject.keywordPlusMETHYLOCOCCUS-CAPSULATUS BATH-
dc.subject.keywordPlusMONOOXYGENASE PMMO-
dc.subject.keywordPlusCRYSTAL-STRUCTURE-
dc.subject.keywordPlusENZYME IMMOBILIZATION-
dc.subject.keywordPlusHUMAN FERRITIN-
dc.subject.keywordPlusACTIVE-SITE-
dc.subject.keywordPlusIN-VIVO-
dc.subject.keywordPlusOXIDATION-
dc.subject.keywordPlusPROTEIN-
dc.subject.keywordPlusCOPPER-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Chemical and Biological Engineering > 1. Journal Articles
Graduate School > KU-KIST Graduate School of Converging Science and Technology > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Jee won photo

Lee, Jee won
공과대학 (화공생명공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE