Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Catalytically Active Au Layers Grown on Pd Nanoparticles for Direct Synthesis of H2O2: Lattice Strain and Charge-Transfer Perspective Analyses

Full metadata record
DC Field Value Language
dc.contributor.authorKim, Jin-Soo-
dc.contributor.authorKim, Hong-Kyu-
dc.contributor.authorKim, Sung-Hoon-
dc.contributor.authorKim, Inho-
dc.contributor.authorYu, Taekyung-
dc.contributor.authorHan, Geun-Ho-
dc.contributor.authorLee, Kwan-Young-
dc.contributor.authorLee, Jae-Chul-
dc.contributor.authorAhn, Jae-Pyoung-
dc.date.accessioned2021-09-01T17:00:58Z-
dc.date.available2021-09-01T17:00:58Z-
dc.date.created2021-06-19-
dc.date.issued2019-04-
dc.identifier.issn1936-0851-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/66495-
dc.description.abstractDespite its effectiveness in improving the properties of materials, strain engineering has not yet been employed to endow catalytic characteristics to apparently nonactive metals. This limitation can be overcome by controlling simultaneously lattice strains and charge transfer originated from the epitaxially prepared bimetallic core shell structure. Here, we report the experimental results of the direct H2O2 synthesis enabled by a strained Au layer grown on Pd nanoparticles. This system can benefit the individual catalytic properties of each involved material, and the heterostructured catalyst displays an improved productivity for the direct synthesis of H2O2 by similar to 100% relative to existing Pd catalysts. This is explained here by exploring the individual effects of lattice strain and charge transfer on the alteration of the electronic structure of ultrathin Au layers grown on Pd nanoparticles. The approach used in this study can be viewed as a means of designing catalysts with multiple catalytic functions.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherAMER CHEMICAL SOC-
dc.subjectGENERALIZED GRADIENT APPROXIMATION-
dc.subjectHYDROGEN-PEROXIDE-
dc.subjectINDUCED DISSOCIATION-
dc.subjectCHEMICAL-PROPERTIES-
dc.subjectH-2-
dc.subjectOXYGEN-
dc.subjectGOLD-
dc.subjectREDUCTION-
dc.subjectSURFACE-
dc.subjectO-2-
dc.titleCatalytically Active Au Layers Grown on Pd Nanoparticles for Direct Synthesis of H2O2: Lattice Strain and Charge-Transfer Perspective Analyses-
dc.typeArticle-
dc.contributor.affiliatedAuthorLee, Kwan-Young-
dc.contributor.affiliatedAuthorLee, Jae-Chul-
dc.identifier.doi10.1021/acsnano.9b01394-
dc.identifier.scopusid2-s2.0-85064335695-
dc.identifier.wosid000466052900102-
dc.identifier.bibliographicCitationACS NANO, v.13, no.4, pp.4761 - 4770-
dc.relation.isPartOfACS NANO-
dc.citation.titleACS NANO-
dc.citation.volume13-
dc.citation.number4-
dc.citation.startPage4761-
dc.citation.endPage4770-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.subject.keywordPlusGENERALIZED GRADIENT APPROXIMATION-
dc.subject.keywordPlusHYDROGEN-PEROXIDE-
dc.subject.keywordPlusINDUCED DISSOCIATION-
dc.subject.keywordPlusCHEMICAL-PROPERTIES-
dc.subject.keywordPlusH-2-
dc.subject.keywordPlusOXYGEN-
dc.subject.keywordPlusGOLD-
dc.subject.keywordPlusREDUCTION-
dc.subject.keywordPlusSURFACE-
dc.subject.keywordPlusO-2-
dc.subject.keywordAuthorcatalyst-
dc.subject.keywordAuthorhydrogen peroxide-
dc.subject.keywordAuthorcore-shell structure-
dc.subject.keywordAuthorPd@Au-
dc.subject.keywordAuthorstrain engineering-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Chemical and Biological Engineering > 1. Journal Articles
College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Kwan Young photo

Lee, Kwan Young
공과대학 (화공생명공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE