Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Molecular force fields with gradient-domain machine learning: Construction and application to dynamics of small molecules with coupled cluster forces

Full metadata record
DC Field Value Language
dc.contributor.authorSauceda, Huziel E.-
dc.contributor.authorChmiela, Stefan-
dc.contributor.authorPoltavsky, Igor-
dc.contributor.authorMueller, Klaus-Robert-
dc.contributor.authorTkatchenko, Alexandre-
dc.date.accessioned2021-09-01T17:15:34Z-
dc.date.available2021-09-01T17:15:34Z-
dc.date.created2021-06-19-
dc.date.issued2019-03-21-
dc.identifier.issn0021-9606-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/66628-
dc.description.abstractWe present the construction of molecular force fields for small molecules (less than 25 atoms) using the recently developed symmetrized gradient-domain machine learning (sGDML) approach [Chmiela et al., Nat. Commun. 9, 3887 (2018) and Chmiela et al., Sci. Adv. 3, e1603015 (2017)]. This approach is able to accurately reconstruct complex high-dimensional potential-energy surfaces from just a few 100s of molecular conformations extracted from ab initio molecular dynamics trajectories. The data efficiency of the sGDML approach implies that atomic forces for these conformations can be computed with high-level wavefunction-based approaches, such as the "gold standard" coupled-cluster theory with single, double and perturbative triple excitations [CCSD(T)]. We demonstrate that the flexible nature of the sGDML model recovers local and non-local electronic interactions (e. g., H-bonding, proton transfer, lone pairs, changes in hybridization states, steric repulsion, and n -> pi* interactions) without imposing any restriction on the nature of interatomic potentials. The analysis of sGDML molecular dynamics trajectories yields new qualitative insights into dynamics and spectroscopy of small molecules close to spectroscopic accuracy. Published under license by AIP Publishing.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherAMER INST PHYSICS-
dc.subjectHYDROGEN-
dc.subjectCHEMISTRY-
dc.subjectENERGY-
dc.subjectMODEL-
dc.subjectAPPROXIMATION-
dc.subjectPOTENTIALS-
dc.subjectSURFACES-
dc.subjectPROGRAM-
dc.subjectWATER-
dc.subjectPSI4-
dc.titleMolecular force fields with gradient-domain machine learning: Construction and application to dynamics of small molecules with coupled cluster forces-
dc.typeArticle-
dc.contributor.affiliatedAuthorMueller, Klaus-Robert-
dc.identifier.doi10.1063/1.5078687-
dc.identifier.scopusid2-s2.0-85063040498-
dc.identifier.wosid000462014500006-
dc.identifier.bibliographicCitationJOURNAL OF CHEMICAL PHYSICS, v.150, no.11-
dc.relation.isPartOfJOURNAL OF CHEMICAL PHYSICS-
dc.citation.titleJOURNAL OF CHEMICAL PHYSICS-
dc.citation.volume150-
dc.citation.number11-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryPhysics, Atomic, Molecular & Chemical-
dc.subject.keywordPlusHYDROGEN-
dc.subject.keywordPlusCHEMISTRY-
dc.subject.keywordPlusENERGY-
dc.subject.keywordPlusMODEL-
dc.subject.keywordPlusAPPROXIMATION-
dc.subject.keywordPlusPOTENTIALS-
dc.subject.keywordPlusSURFACES-
dc.subject.keywordPlusPROGRAM-
dc.subject.keywordPlusWATER-
dc.subject.keywordPlusPSI4-
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Artificial Intelligence > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE