Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Binder-less chemical grafting of SiO2 nanoparticles onto polyethylene separators for lithium-ion batteries

Full metadata record
DC Field Value Language
dc.contributor.authorNa, Wonjun-
dc.contributor.authorKoh, Ki Hwan-
dc.contributor.authorLee, Albert S.-
dc.contributor.authorCho, Sangho-
dc.contributor.authorOk, Byoeri-
dc.contributor.authorHwang, Suk-Won-
dc.contributor.authorLee, Jin Hong-
dc.contributor.authorKoo, Chong Min-
dc.date.accessioned2021-09-01T17:55:20Z-
dc.date.available2021-09-01T17:55:20Z-
dc.date.created2021-06-19-
dc.date.issued2019-03-01-
dc.identifier.issn0376-7388-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/67046-
dc.description.abstractSilica nanoparticles were chemically grafted onto a porous polyethylene separator to improve the adhesion strength, thermal stability, and electrochemical performance of a polyolefin separator. A surface activation via UVO plasma treatment, followed by silane hybridization yielded a polymeric binder-free, thin coating of SiO2 nanoparticles onto the separator. The chemical grafting provided a much stronger adhesive strength (> 2.5 N/cm), reduced thermal shrinkage (< 5% at 120 degrees C), and higher ionic conductivity (0.84 mS/cm) than conventional physical coating of a ceramic particle-based polymer composite. Lithium-ion batteries fabricated with metallic lithium as the anode, a LiFePO4 (LFP) cathode and SiO2-grafted separator showed an excellent rate capability (68 mAh/g at 5 C) and cycling performance (143 mAh/g after 200 cycles).-
dc.languageEnglish-
dc.language.isoen-
dc.publisherELSEVIER SCIENCE BV-
dc.subjectHYBRID IONOGEL ELECTROLYTES-
dc.subjectATOMIC LAYER DEPOSITION-
dc.subjectPOLYMER ELECTROLYTES-
dc.subjectCOMPOSITE MEMBRANE-
dc.subjectCYCLING STABILITY-
dc.subjectCHALLENGES-
dc.titleBinder-less chemical grafting of SiO2 nanoparticles onto polyethylene separators for lithium-ion batteries-
dc.typeArticle-
dc.contributor.affiliatedAuthorHwang, Suk-Won-
dc.contributor.affiliatedAuthorKoo, Chong Min-
dc.identifier.doi10.1016/j.memsci.2018.12.039-
dc.identifier.scopusid2-s2.0-85058695245-
dc.identifier.wosid000454830600065-
dc.identifier.bibliographicCitationJOURNAL OF MEMBRANE SCIENCE, v.573, pp.621 - 627-
dc.relation.isPartOfJOURNAL OF MEMBRANE SCIENCE-
dc.citation.titleJOURNAL OF MEMBRANE SCIENCE-
dc.citation.volume573-
dc.citation.startPage621-
dc.citation.endPage627-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaPolymer Science-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalWebOfScienceCategoryPolymer Science-
dc.subject.keywordPlusHYBRID IONOGEL ELECTROLYTES-
dc.subject.keywordPlusATOMIC LAYER DEPOSITION-
dc.subject.keywordPlusPOLYMER ELECTROLYTES-
dc.subject.keywordPlusCOMPOSITE MEMBRANE-
dc.subject.keywordPlusCYCLING STABILITY-
dc.subject.keywordPlusCHALLENGES-
dc.subject.keywordAuthorLithium-ion battery-
dc.subject.keywordAuthorSeparator-
dc.subject.keywordAuthorSilica nanoparticle-
dc.subject.keywordAuthorChemical grafting-
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > KU-KIST Graduate School of Converging Science and Technology > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE