Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Fast and accurate adaptive finite difference method for dendritic growth

Full metadata record
DC Field Value Language
dc.contributor.authorJeong, Darae-
dc.contributor.authorKim, Junseok-
dc.date.accessioned2021-09-01T18:17:10Z-
dc.date.available2021-09-01T18:17:10Z-
dc.date.created2021-06-19-
dc.date.issued2019-03-
dc.identifier.issn0010-4655-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/67219-
dc.description.abstractWe propose a fast and accurate adaptive numerical method for solving a phase-field model for dendritic growth. The phase-field model for dendritic growth consists of two equations. One is for capturing the interface between solid and melt. The other is for the temperature distribution. For the phase-field equation, we apply a hybrid explicit method on a time-dependent narrow-band domain, which is defined using the phase-field function. For the temperature equation, we apply the explicit Euler method on the whole computational domain. The novelties of the proposed numerical algorithm are that it is very simple and that it does not require the conventional complex adaptive data structures. Our numerical simulation results are consistent with previous results. Furthermore, the computational time required (CPU time) is shorter. (C) 2018 Elsevier B.V. All rights reserved.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherELSEVIER SCIENCE BV-
dc.subjectPHASE-FIELD SIMULATION-
dc.subjectBINARY ALLOY-
dc.subjectDIRECTIONAL SOLIDIFICATION-
dc.subjectCRYSTAL-GROWTH-
dc.subjectMESH REFINEMENT-
dc.subjectFACET FORMATION-
dc.subjectEFFICIENT-
dc.subjectCONVECTION-
dc.subjectMODEL-
dc.subjectALGORITHM-
dc.titleFast and accurate adaptive finite difference method for dendritic growth-
dc.typeArticle-
dc.contributor.affiliatedAuthorKim, Junseok-
dc.identifier.doi10.1016/j.cpc.2018.10.020-
dc.identifier.scopusid2-s2.0-85056714596-
dc.identifier.wosid000458227100010-
dc.identifier.bibliographicCitationCOMPUTER PHYSICS COMMUNICATIONS, v.236, pp.95 - 103-
dc.relation.isPartOfCOMPUTER PHYSICS COMMUNICATIONS-
dc.citation.titleCOMPUTER PHYSICS COMMUNICATIONS-
dc.citation.volume236-
dc.citation.startPage95-
dc.citation.endPage103-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryComputer Science, Interdisciplinary Applications-
dc.relation.journalWebOfScienceCategoryPhysics, Mathematical-
dc.subject.keywordPlusPHASE-FIELD SIMULATION-
dc.subject.keywordPlusBINARY ALLOY-
dc.subject.keywordPlusDIRECTIONAL SOLIDIFICATION-
dc.subject.keywordPlusCRYSTAL-GROWTH-
dc.subject.keywordPlusMESH REFINEMENT-
dc.subject.keywordPlusFACET FORMATION-
dc.subject.keywordPlusEFFICIENT-
dc.subject.keywordPlusCONVECTION-
dc.subject.keywordPlusMODEL-
dc.subject.keywordPlusALGORITHM-
dc.subject.keywordAuthorPhase-field model-
dc.subject.keywordAuthorDendritic growth-
dc.subject.keywordAuthorCrystal morphology-
dc.subject.keywordAuthorSolidification-
dc.subject.keywordAuthorGrowth from melt-
dc.subject.keywordAuthorAdaptive numerical method-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Science > Department of Mathematics > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Jun seok photo

Kim, Jun seok
이과대학 (수학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE