Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

An efficient linear second order unconditionally stable direct discretization method for the phase-field crystal equation on surfaces

Full metadata record
DC Field Value Language
dc.contributor.authorLi, Yibao-
dc.contributor.authorLuo, Chaojun-
dc.contributor.authorXia, Binhu-
dc.contributor.authorKim, Junseok-
dc.date.accessioned2021-09-01T18:22:58Z-
dc.date.available2021-09-01T18:22:58Z-
dc.date.created2021-06-18-
dc.date.issued2019-03-
dc.identifier.issn0307-904X-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/67248-
dc.description.abstractWe develop an unconditionally stable direct discretization scheme for solving the phase-field crystal equation on surfaces. The surface is discretized by using an unstructured triangular mesh. Gradient, divergence, and Laplacian operators are defined on triangular meshes. The proposed numerical method is second-order accurate in space and time. At each time step, the proposed computational scheme results in linear elliptic equations to be solved, thus it is easy to implement the algorithm. It is proved that the proposed scheme satisfies a discrete energy-dissipation law. Therefore, it is unconditionally stable. A fast and efficient biconjugate gradients stabilized solver is used to solve the resulting discrete system. Numerical experiments are conducted to demonstrate the performance of the proposed algorithm. (C) 2018 Elsevier Inc. All rights reserved.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherELSEVIER SCIENCE INC-
dc.subjectFINITE-DIFFERENCE SCHEME-
dc.subjectCAHN-HILLIARD EQUATION-
dc.subjectSPLITTING METHODS-
dc.subject1ST-
dc.titleAn efficient linear second order unconditionally stable direct discretization method for the phase-field crystal equation on surfaces-
dc.typeArticle-
dc.contributor.affiliatedAuthorKim, Junseok-
dc.identifier.doi10.1016/j.apm.2018.11.012-
dc.identifier.scopusid2-s2.0-85056669981-
dc.identifier.wosid000456492500029-
dc.identifier.bibliographicCitationAPPLIED MATHEMATICAL MODELLING, v.67, pp.477 - 490-
dc.relation.isPartOfAPPLIED MATHEMATICAL MODELLING-
dc.citation.titleAPPLIED MATHEMATICAL MODELLING-
dc.citation.volume67-
dc.citation.startPage477-
dc.citation.endPage490-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaMathematics-
dc.relation.journalResearchAreaMechanics-
dc.relation.journalWebOfScienceCategoryEngineering, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMathematics, Interdisciplinary Applications-
dc.relation.journalWebOfScienceCategoryMechanics-
dc.subject.keywordPlusFINITE-DIFFERENCE SCHEME-
dc.subject.keywordPlusCAHN-HILLIARD EQUATION-
dc.subject.keywordPlusSPLITTING METHODS-
dc.subject.keywordPlus1ST-
dc.subject.keywordAuthorUnconditionally stable-
dc.subject.keywordAuthorPhase-field crystal equation-
dc.subject.keywordAuthorTriangular surface mesh-
dc.subject.keywordAuthorLaplace-Beltrami operator-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Science > Department of Mathematics > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Jun seok photo

Kim, Jun seok
이과대학 (수학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE