Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Multifunctional Self-Doped Nanocrystal Thin-Film Transistor Sensors

Full metadata record
DC Field Value Language
dc.contributor.authorChoi, Dongsun-
dc.contributor.authorPark, Mihyeon-
dc.contributor.authorJeong, Juyeon-
dc.contributor.authorShin, Hang-Beum-
dc.contributor.authorChoi, Yun Chang-
dc.contributor.authorJeong, Kwang Seob-
dc.date.accessioned2021-09-01T18:58:25Z-
dc.date.available2021-09-01T18:58:25Z-
dc.date.created2021-06-19-
dc.date.issued2019-02-20-
dc.identifier.issn1944-8244-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/67603-
dc.description.abstractSelf-doping in nanocrystals allows accessing higher quantum states. The electrons occupying the lowest energy state of the conduction band form a metastable state that is very sensitive to the electrostatic potential of the surface. Here, we demonstrate that the high charge sensitivity of the self-doped HgSe colloidal quantum dot solid can be used for sensing three different targets with different phases through self-doped HgSe nanocrystal/ZnO thin-film transistors: the environmental gases (CO2 gas, NO gas, and H2S gas); mid-IR photon; and biothiol (L-cysteine) molecules. The self-doped quantum dot solid detects the targets through different mechanisms. The physisorption of the CO2 gas and the NO gas molecules, and the mid-IR photodetection show reversible processes, whereas the chemisorption of L-cysteine biothiol and H2S gas molecules shows irreversible processes. Considering the quenching of mid-IR intraband photoluminescence of the HgSe colloidal quantum dot solid by the vibrational mode of the CO2 gas molecule, sensing the CO2 gas could be involved in the electronic-to-vibrational energy transfer. The target molecules are quantitatively analyzed, and the limits of detection for CO2 and L-cysteine are 250 ppm and 10 nM, respectively, which are comparable to the performance of commercial detectors.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherAMER CHEMICAL SOC-
dc.subjectQUANTUM DOTS-
dc.subjectTRANSITION-
dc.titleMultifunctional Self-Doped Nanocrystal Thin-Film Transistor Sensors-
dc.typeArticle-
dc.contributor.affiliatedAuthorJeong, Kwang Seob-
dc.identifier.doi10.1021/acsami.8b16083-
dc.identifier.scopusid2-s2.0-85061957714-
dc.identifier.wosid000459642200060-
dc.identifier.bibliographicCitationACS APPLIED MATERIALS & INTERFACES, v.11, no.7, pp.7242 - 7249-
dc.relation.isPartOfACS APPLIED MATERIALS & INTERFACES-
dc.citation.titleACS APPLIED MATERIALS & INTERFACES-
dc.citation.volume11-
dc.citation.number7-
dc.citation.startPage7242-
dc.citation.endPage7249-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.subject.keywordPlusQUANTUM DOTS-
dc.subject.keywordPlusTRANSITION-
dc.subject.keywordAuthorself-doped nanocrystal-
dc.subject.keywordAuthorgas sensor-
dc.subject.keywordAuthorprobe-free biosensor-
dc.subject.keywordAuthormid-IR photodetector-
dc.subject.keywordAuthorTFT sensor-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Science > Department of Chemistry > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE