Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Inversion-free image recovery from strong aberration using a minimally sampled transmission matrix

Authors
Park, KwanjunYang, Taeseok DanielKim, Hyung-JinKong, TaedongLee, Jung MinChoi, Hyuk SoonChun, Hoon JaiKim, Beop-MinChoi, Youngwoon
Issue Date
4-2월-2019
Publisher
NATURE PUBLISHING GROUP
Citation
SCIENTIFIC REPORTS, v.9
Indexed
SCIE
SCOPUS
Journal Title
SCIENTIFIC REPORTS
Volume
9
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/67674
DOI
10.1038/s41598-018-38027-y
ISSN
2045-2322
Abstract
A transmission matrix (TM), a characteristic response for an input-output relation of an optical system, has been used for achieving diffraction-limited and aberration-free images through highly-aberrant imaging systems. However, its requirement of acquiring a huge-size TM along with its heavy computational load limit its widespread applications. Here we propose a method for TM-based image reconstruction, which is more efficient in terms of data manipulation and computational time. Only 10% of the TM elements for a fish-eye (FE) lens with strong aberration were sampled compared to that required for the image reconstruction by the conventional inversion method. The missing information was filled in by an iterative interpolation algorithm working in k-space. In addition, as a replacement of the time-consuming matrix inversion process, a phase pattern was created from the minimally sampled TM in order to compensate for the angle-dependent phase retardation caused by the FE lens. The focal distortion could be corrected by applying the phase correction pattern to the angular spectrums of the measured object images. The remaining spatial distortion could also be determined through the geometrical transformation also determined by the minimally sampled TM elements. Through the use of these procedures, the object image can be reconstructed 55 times faster than through the use of the usual inversion method using the full-sized TM, without compromising the reconstruction performances.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Medicine > Department of Medical Science > 1. Journal Articles
Graduate School > Department of Bioengineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Chun, Hoon Jai photo

Chun, Hoon Jai
의과대학 (의학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE