Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Carbamazepine removal from water by carbon dot-modified magnetic carbon nanotubes

Authors
Deng, YanchunOk, Yong SikMohan, DineshPittman, Charles U., Jr.Dou, Xiaomin
Issue Date
2월-2019
Publisher
ACADEMIC PRESS INC ELSEVIER SCIENCE
Keywords
Adsorption; Carbon dots; Modified carbon nanotubes; Carbamazepine; Intraparticle diffusion
Citation
ENVIRONMENTAL RESEARCH, v.169, pp.434 - 444
Indexed
SCIE
SCOPUS
Journal Title
ENVIRONMENTAL RESEARCH
Volume
169
Start Page
434
End Page
444
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/67779
DOI
10.1016/j.envres.2018.11.035
ISSN
0013-9351
Abstract
Carbon dot- and magnetite-modified magnetic carbon nanotubes (CMNTs) were synthesized and evaluated for carbamazepine removal from water. The adsorbent was characterized by multiple modem surface and microstructure analyzing techniques. CMNTs were composed of three components including carbon dots (CDs), carbon nanotubes (CNTs) and magnetite. CDs and CNTs introduce abundant carboxyl groups onto CMNTs and magnetite allows rapid magnetic separation of the adsorbent realizable after batch adsorption. This adsorbent has a moderately high adsorption capacity of 65 mg-carbamazepine/g-adsorbent at pH 7.0 +/- 0.2, which is superior to many reported adsorbents. Carbamazepine was uptaken well in a wide pH range, regardless of the surface charging of CMNTs. Its adsorption on CMNTs was quite fast and reached 80% of removal during the initial 3 h. The mass transfer within CMNTs and the time-dependent utilization, exhaustion and depletion of the adsorption capacity were successfully described using a simplified homogeneous surface diffusion model (HSDM). The surface diffusion coefficients (D-s) rose with increasing initial carbamazepine concentrations. After six regeneration and recycle experiments, the capacity loss of CMNTs was less than 2.2% at the conditions tested. FTIR spectra showed the characteristics of the components. Raman spectra implied a pi-pi electron donor-acceptor (EDA) interaction during adsorption. This work proposed a method of combining pi-bond-rich materials (CNTs and CDs) and magnetite to make separable composite adsorbents with high affinity interactions between carbamazepine and carbon materials. The prepared adsorbent is attractive for carbamazepine removal due to its good performance, moderate cost, ease of separation, and ability to regenerate.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Life Sciences and Biotechnology > Division of Environmental Science and Ecological Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE