Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Effective Time Step Analysis of a Nonlinear Convex Splitting Scheme for the Cahn-Hilliard Equation

Full metadata record
DC Field Value Language
dc.contributor.authorLee, Seunggyu-
dc.contributor.authorKim, Junseok-
dc.date.accessioned2021-09-01T20:49:23Z-
dc.date.available2021-09-01T20:49:23Z-
dc.date.created2021-06-18-
dc.date.issued2019-02-
dc.identifier.issn1815-2406-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/68196-
dc.description.abstractWe analyze the effective time step size of a nonlinear convex splitting scheme for the Cahn-Hilliard (CH) equation. The convex splitting scheme is unconditionally stable, which implies we can use arbitrary large time-steps and get stable numerical solutions. However, if we use a too large time-step, then we have not only discretization error but also time-step rescaling problem. In this paper, we show the time-step rescaling problem from the convex splitting scheme by comparing with a fully implicit scheme for the CH equation. We perform various test problems. The computation results confirm the time-step rescaling problem and suggest that we need to use small enough time-step sizes for the accurate computational results.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherGLOBAL SCIENCE PRESS-
dc.subjectFINITE-DIFFERENCE SCHEME-
dc.subject2-PHASE FLOW-
dc.subjectSIMULATION-
dc.subject2ND-ORDER-
dc.titleEffective Time Step Analysis of a Nonlinear Convex Splitting Scheme for the Cahn-Hilliard Equation-
dc.typeArticle-
dc.contributor.affiliatedAuthorKim, Junseok-
dc.identifier.doi10.4208/cicp.OA-2017-0260-
dc.identifier.scopusid2-s2.0-85068924019-
dc.identifier.wosid000455960400006-
dc.identifier.bibliographicCitationCOMMUNICATIONS IN COMPUTATIONAL PHYSICS, v.25, no.2, pp.448 - 460-
dc.relation.isPartOfCOMMUNICATIONS IN COMPUTATIONAL PHYSICS-
dc.citation.titleCOMMUNICATIONS IN COMPUTATIONAL PHYSICS-
dc.citation.volume25-
dc.citation.number2-
dc.citation.startPage448-
dc.citation.endPage460-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryPhysics, Mathematical-
dc.subject.keywordPlusFINITE-DIFFERENCE SCHEME-
dc.subject.keywordPlus2-PHASE FLOW-
dc.subject.keywordPlusSIMULATION-
dc.subject.keywordPlus2ND-ORDER-
dc.subject.keywordAuthorCahn-Hilliard equation-
dc.subject.keywordAuthorconvex splitting-
dc.subject.keywordAuthoreffective time step-
dc.subject.keywordAuthorFourier analysis-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Science > Department of Mathematics > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Jun seok photo

Kim, Jun seok
이과대학 (수학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE