Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Impregnation of hydrotalcite with NaNO3 for enhanced high-temperature CO2 sorption uptake

Full metadata record
DC Field Value Language
dc.contributor.authorKim, Suji-
dc.contributor.authorLee, Ki Bong-
dc.date.accessioned2021-09-01T21:29:23Z-
dc.date.available2021-09-01T21:29:23Z-
dc.date.created2021-06-19-
dc.date.issued2019-01-15-
dc.identifier.issn1385-8947-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/68283-
dc.description.abstractImpregnation with alkali metals is a convenient and attractive way to enhance the CO2 sorption uptake of hydrotalcite. In this study, NaNO3 was used as a novel alkali metal precursor to increase the basicity of commercial hydrotalcite. Also, the influence of NaNO3 on the structural and textural properties and the CO2 sorption performance were investigated for hydrotalcites having different Mg:Al molar ratios. The change in the pore structure after impregnation with NaNO3 was investigated by N-2 adsorption-desorption analysis, and the crystalline structures of hydrotalcites with different Mg: Al molar ratios were compared using X-ray diffraction. Because of the basicity increase caused by introducing NaNO3, enhanced CO2 sorption uptake was obtained for the hydrotalcites, and the hydrotalcite containing 30 wt% NaNO3 in a mixed MgO and Al2O3 structure showed the highest CO2 uptake of 1.15 mol.kg(-1) at 200 degrees C and 1 atm. The degree of enhancement in the CO2 sorption uptake was dependent on the Mg:Al molar ratio in pristine hydrotalcite. Large amounts of Al2O3 appeared to highly destabilize the functional groups on the surface of the hydrotalcite, contributing to the increased basicity and CO2 sorption performance of hydrotalcite.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherELSEVIER SCIENCE SA-
dc.subjectGAS SHIFT REACTION-
dc.subjectPURITY HYDROGEN-PRODUCTION-
dc.subjectLAYERED DOUBLE HYDROXIDES-
dc.subjectMG DOUBLE SALT-
dc.subjectPROMOTED ALUMINA-
dc.subjectCARBON-DIOXIDE-
dc.subjectK2CO3-PROMOTED HYDROTALCITE-
dc.subjectACTIVATED HYDROTALCITES-
dc.subjectHYDROTHERMAL SYNTHESIS-
dc.subjectMIXED OXIDES-
dc.titleImpregnation of hydrotalcite with NaNO3 for enhanced high-temperature CO2 sorption uptake-
dc.typeArticle-
dc.contributor.affiliatedAuthorLee, Ki Bong-
dc.identifier.doi10.1016/j.cej.2018.08.207-
dc.identifier.scopusid2-s2.0-85053761915-
dc.identifier.wosid000447004100096-
dc.identifier.bibliographicCitationCHEMICAL ENGINEERING JOURNAL, v.356, pp.964 - 972-
dc.relation.isPartOfCHEMICAL ENGINEERING JOURNAL-
dc.citation.titleCHEMICAL ENGINEERING JOURNAL-
dc.citation.volume356-
dc.citation.startPage964-
dc.citation.endPage972-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalWebOfScienceCategoryEngineering, Environmental-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.subject.keywordPlusGAS SHIFT REACTION-
dc.subject.keywordPlusPURITY HYDROGEN-PRODUCTION-
dc.subject.keywordPlusLAYERED DOUBLE HYDROXIDES-
dc.subject.keywordPlusMG DOUBLE SALT-
dc.subject.keywordPlusPROMOTED ALUMINA-
dc.subject.keywordPlusCARBON-DIOXIDE-
dc.subject.keywordPlusK2CO3-PROMOTED HYDROTALCITE-
dc.subject.keywordPlusACTIVATED HYDROTALCITES-
dc.subject.keywordPlusHYDROTHERMAL SYNTHESIS-
dc.subject.keywordPlusMIXED OXIDES-
dc.subject.keywordAuthorHydrotalcite-
dc.subject.keywordAuthorHigh-temperature CO2 sorption-
dc.subject.keywordAuthorImpregnation-
dc.subject.keywordAuthorNaNO3-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Chemical and Biological Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Ki Bong photo

Lee, Ki Bong
공과대학 (화공생명공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE