Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

UAV-Aided Wireless Powered Communication Networks: Trajectory Optimization and Resource Allocation for Minimum Throughput Maximization

Authors
Park, JunheeLee, HoonEom, SubinLee, Inkyu
Issue Date
2019
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Keywords
Uplink; Wireless communication; Unmanned aerial vehicles; Trajectory; Resource management; Throughput; Downlink; UAV communication; wireless powered communication networks; trajectory optimization
Citation
IEEE ACCESS, v.7, pp.134978 - 134991
Indexed
SCIE
SCOPUS
Journal Title
IEEE ACCESS
Volume
7
Start Page
134978
End Page
134991
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/68864
DOI
10.1109/ACCESS.2019.2941278
ISSN
2169-3536
Abstract
This paper investigates wireless powered communication network (WPCN) systems aided by unmanned aerial vehicle (UAV) where a UAV-mounted access point (AP) serves multiple energy-constrained ground terminals (GTs). Specifically, the UAVs first transmit the wireless energy transfer (WET) signals to charge the GTs in the downlink. Then, by utilizing the harvested energy, the GTs send their wireless information transmission (WIT) signals to the UAVs in the uplink. In this paper, depending on the operations of the UAVs, we consider two different scenarios, namely integrated and separated UAV WPCNs. First, in the integrated system, a UAV acts as a hybrid AP in which both energy transfer and information reception are performed at a single UAV. In contrast, for the separated UAV WPCN, we consider two UAVs each of which behaves as an information AP and an energy AP independently, and thus the information decoding and the energy transfer are separately processed at two different UAVs. In each system, we formulate two optimization problems taking into account a linear energy harvesting (EH) model and a practical non-linear model. To maximize the minimum throughput of the GTs, we jointly optimize the trajectories of the UAVs, the uplink power control, and the time resource allocation for the WET and the WIT. Since the formulated problems are non-convex, in the linear EH model-based system, we apply the concave-convex procedure by deriving appropriate convex bounds for non-convex constraints and identify the suboptimal solution for the problem by a proposed iterative algorithm. In the non-linear model-based system, we propose another algorithm to obtain an efficient solution by adopting the successive convex approximation method with the alternating optimization framework. Simulation results demonstrate the efficiency and the performance of the proposed algorithms compared to conventional schemes.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Electrical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, In kyu photo

Lee, In kyu
공과대학 (전기전자공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE