Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Field-plate engineering for high breakdown voltage beta-Ga2O3 nanolayer field-effect transistors

Full metadata record
DC Field Value Language
dc.contributor.authorBae, Jinho-
dc.contributor.authorKim, Hyoung Woo-
dc.contributor.authorKang, In Ho-
dc.contributor.authorKim, Jihyun-
dc.date.accessioned2021-09-01T22:49:00Z-
dc.date.available2021-09-01T22:49:00Z-
dc.date.created2021-06-19-
dc.date.issued2019-
dc.identifier.issn2046-2069-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/68963-
dc.description.abstractThe narrow voltage swing of a nanoelectronic device limits its implementations in electronic circuits. Nanolayer -Ga2O3 has a superior breakdown field of approximately 8 MV cm(-1), making it an ideal candidate for a next-generation power device nanomaterial. In this study, a field modulating plate was introduced into a -Ga2O3 nano-field-effect transistor (nanoFET) to engineer the distribution of electric fields, wherein the off-state three-terminal breakdown voltage was reported to be 314 V. -Ga2O3 flakes were separated from a single-crystal bulk substrate using a mechanical exfoliation method. The layout of the field modulating plate was optimized through a device simulation to effectively distribute the peak electric fields. The field-plated -Ga2O3 nanoFETs exhibited n-type behaviors with a high output current saturation, exhibiting excellent switching characteristics with a threshold voltage of -3.8 V, a subthreshold swing of 101.3 mV dec(-1), and an on/off ratio greater than 10(7). The -Ga2O3 nanoFETs with a high breakdown voltage of over 300 V could pave a way for downsizing power electronic devices, enabling the economization of power systems.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherROYAL SOC CHEMISTRY-
dc.subjectPOWER-
dc.subjectGANHFET-
dc.subjectDESIGN-
dc.subjectFILMS-
dc.titleField-plate engineering for high breakdown voltage beta-Ga2O3 nanolayer field-effect transistors-
dc.typeArticle-
dc.contributor.affiliatedAuthorKim, Jihyun-
dc.identifier.doi10.1039/c9ra01163c-
dc.identifier.scopusid2-s2.0-85063582422-
dc.identifier.wosid000464595600041-
dc.identifier.bibliographicCitationRSC ADVANCES, v.9, no.17, pp.9678 - 9683-
dc.relation.isPartOfRSC ADVANCES-
dc.citation.titleRSC ADVANCES-
dc.citation.volume9-
dc.citation.number17-
dc.citation.startPage9678-
dc.citation.endPage9683-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.subject.keywordPlusPOWER-
dc.subject.keywordPlusGANHFET-
dc.subject.keywordPlusDESIGN-
dc.subject.keywordPlusFILMS-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Chemical and Biological Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE