Atomic clock performance enabling geodesy below the centimetre level
DC Field | Value | Language |
---|---|---|
dc.contributor.author | McGrew, W. F. | - |
dc.contributor.author | Zhang, X. | - |
dc.contributor.author | Fasano, R. J. | - |
dc.contributor.author | Schaffer, S. A. | - |
dc.contributor.author | Beloy, K. | - |
dc.contributor.author | Nicolodi, D. | - |
dc.contributor.author | Brown, R. C. | - |
dc.contributor.author | Hinkley, N. | - |
dc.contributor.author | Milani, G. | - |
dc.contributor.author | Schioppo, M. | - |
dc.contributor.author | Yoon, T. H. | - |
dc.contributor.author | Ludlow, A. D. | - |
dc.date.accessioned | 2021-09-02T02:12:41Z | - |
dc.date.available | 2021-09-02T02:12:41Z | - |
dc.date.created | 2021-06-19 | - |
dc.date.issued | 2018-12-06 | - |
dc.identifier.issn | 0028-0836 | - |
dc.identifier.uri | https://scholar.korea.ac.kr/handle/2021.sw.korea/71229 | - |
dc.description.abstract | The passage of time is tracked by counting oscillations of a frequency reference, such as Earth's revolutions or swings of a pendulum. By referencing atomic transitions, frequency (and thus time) can be measured more precisely than any other physical quantity, with the current generation of optical atomic clocks reporting fractional performance below the 10(-17) level(1-5). However, the theory of relativity prescribes that the passage of time is not absolute, but is affected by an observer's reference frame. Consequently, clock measurements exhibit sensitivity to relative velocity, acceleration and gravity potential. Here we demonstrate local optical clock measurements that surpass the current ability to account for the gravitational distortion of space-time across the surface of Earth. In two independent ytterbium optical lattice clocks, we demonstrate unprecedented values of three fundamental benchmarks of clock performance. In units of the clock frequency, we report systematic uncertainty of 1.4 x 10(-18), measurement instability of 3.2 x 10(-19) and reproducibility characterized by ten blinded frequency comparisons, yielding a frequency difference of [-7 +/- (5)(stat) +/- (8)(sys)] x 10(-19), where 'stat' and 'sys' indicate statistical and systematic uncertainty, respectively. Although sensitivity to differences in gravity potential could degrade the performance of the clocks as terrestrial standards of time, this same sensitivity can be used as a very sensitive probe of geopotential(5-9). Near the surface of Earth, clock comparisons at the 1 x 10(-18) level provide a resolution of one centimetre along the direction of gravity, so the performance of these clocks should enable geodesy beyond the state-of-the-art level. These optical clocks could further be used to explore geophysical phenomena(10), detect gravitational waves(11), test general relativity(12) and search for dark matter(13-17). | - |
dc.language | English | - |
dc.language.iso | en | - |
dc.publisher | NATURE PUBLISHING GROUP | - |
dc.subject | OPTICAL LATTICE CLOCKS | - |
dc.subject | RELATIVISTIC REDSHIFT | - |
dc.subject | MODEL | - |
dc.title | Atomic clock performance enabling geodesy below the centimetre level | - |
dc.type | Article | - |
dc.contributor.affiliatedAuthor | Yoon, T. H. | - |
dc.identifier.doi | 10.1038/s41586-018-0738-2 | - |
dc.identifier.scopusid | 2-s2.0-85057727026 | - |
dc.identifier.wosid | 000452269400045 | - |
dc.identifier.bibliographicCitation | NATURE, v.564, no.7734, pp.87 - + | - |
dc.relation.isPartOf | NATURE | - |
dc.citation.title | NATURE | - |
dc.citation.volume | 564 | - |
dc.citation.number | 7734 | - |
dc.citation.startPage | 87 | - |
dc.citation.endPage | + | - |
dc.type.rims | ART | - |
dc.type.docType | Article | - |
dc.description.journalClass | 1 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Science & Technology - Other Topics | - |
dc.relation.journalWebOfScienceCategory | Multidisciplinary Sciences | - |
dc.subject.keywordPlus | OPTICAL LATTICE CLOCKS | - |
dc.subject.keywordPlus | RELATIVISTIC REDSHIFT | - |
dc.subject.keywordPlus | MODEL | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
(02841) 서울특별시 성북구 안암로 14502-3290-1114
COPYRIGHT © 2021 Korea University. All Rights Reserved.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.