Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Enhanced anthocyanin accumulation confers increased growth performance in plants under low nitrate and high salt stress conditions owing to active modulation of nitrate metabolism

Authors
Hai An TruongLee, Won JeJeong, Chan YoungCao Son TrinhLee, SeokjinKang, Chon-SikCheong, Young-KeunHong, Suk-WhanLee, Hojoung
Issue Date
12월-2018
Publisher
ELSEVIER GMBH
Keywords
PAP1-D/fls1ko; ttg1; Low nitrogen; Salinity; Anthocyanin
Citation
JOURNAL OF PLANT PHYSIOLOGY, v.231, pp.41 - 48
Indexed
SCIE
SCOPUS
Journal Title
JOURNAL OF PLANT PHYSIOLOGY
Volume
231
Start Page
41
End Page
48
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/71459
DOI
10.1016/j.jplph.2018.08.015
ISSN
0176-1617
Abstract
Plants require nitrogen (N) for growth and development. However, they are frequently exposed to conditions of nitrogen deficiency. In addition, anthocyanin accumulation is induced under salt stress and nitrate deficiency. To date, most studies have revealed that nitrate deficiency under high sucrose levels induce high levels of anthocyanin accumulation in plants. However, the underlying mechanisms remain unclear. Under nitrate-starved conditions, plant growth rapidly worsens and cells eventually die. In addition, plants are severely affected by salt exposure. Therefore, in this study, we determined whether increased levels of anthocyanin could improve plant growth under salt stress and nitrate-starved conditions. We used PAP1-D/fls1ko and ttg1 plants which have a perturbed anthocyanin biosynthesis pathway to explore the role of anthocyanin in plant adaptation to nitrate-deficient conditions and salt stress. Our results demonstrate that high anthocyanin accumulation in PAP1-D/fls1ko plants confers enhanced tolerance to nitrate-deficient conditions combined with high salinity. PAP1-D/fls1ko plants appeared to use absorbed nitrate efficiently during the nitrate reduction process. In addition, nitrate-related genes such as NRT1.1, NiA1 and NiA2 were upregulated in the PAP1-D/fls1ko plants. On the basis of these findings, it can be concluded that high anthocyanin accumulation helps plants to cope with salt stress under nitrate-deficient conditions via the effective utilization of nitrate metabolism.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Plant Biotechnology > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Ho joung photo

Lee, Ho joung
식물생명공학과
Read more

Altmetrics

Total Views & Downloads

BROWSE