Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Nanometric Water Channels in Water-in-Salt Lithium Ion Battery Electrolyte

Full metadata record
DC Field Value Language
dc.contributor.authorLim, Joonhyung-
dc.contributor.authorPark, Kwanghee-
dc.contributor.authorLee, Hochan-
dc.contributor.authorKim, Jungyu-
dc.contributor.authorKwak, Kyungwon-
dc.contributor.authorCho, Minhaeng-
dc.date.accessioned2021-09-02T03:18:13Z-
dc.date.available2021-09-02T03:18:13Z-
dc.date.created2021-06-19-
dc.date.issued2018-11-21-
dc.identifier.issn0002-7863-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/71810-
dc.description.abstractLithium-ion batteries (LIBs) have been deployed in a wide range of energy-storage applications and helped to revolutionize technological development. Recently, a lithium ion battery that uses superconcentrated salt water as its electrolyte has been developed. However, the role of water in facilitating fast ion transport in such highly concentrated electrolyte solutions is not fully understood yet. Here, femtosecond IR spectroscopy and molecular dynamics simulations are used to show that bulk-like water coexists with interfacial water on ion aggregates. We found that dissolved ions form intricate three-dimensional ion-ion networks that are spontaneously intertwined with nanometric water hydrogen-bonding networks. Then, hydrated lithium ions move through bulk-like water channels acting like conducting wires for lithium ion transport. Our experimental and simulation results indicate that water structure-breaking chaotropic anion salts with a high propensity to form ion networks in aqueous solutions would be excellent candidates for water-based LIB electrolytes. We anticipate that the present work will provide guiding principles for developing aqueous LIB electrolytes.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherAMER CHEMICAL SOC-
dc.subjectHYDROGEN-BOND STRUCTURE-
dc.subjectINFRARED-SPECTROSCOPY-
dc.subjectJUMP MECHANISM-
dc.subjectDYNAMICS-
dc.subjectIR-
dc.subjectEXCHANGE-
dc.subjectTRANSITION-
dc.subjectISSUES-
dc.subjectSTATE-
dc.subjectBAND-
dc.titleNanometric Water Channels in Water-in-Salt Lithium Ion Battery Electrolyte-
dc.typeArticle-
dc.contributor.affiliatedAuthorKwak, Kyungwon-
dc.contributor.affiliatedAuthorCho, Minhaeng-
dc.identifier.doi10.1021/jacs.8b07696-
dc.identifier.scopusid2-s2.0-85056803724-
dc.identifier.wosid000451496800023-
dc.identifier.bibliographicCitationJOURNAL OF THE AMERICAN CHEMICAL SOCIETY, v.140, no.46, pp.15661 - 15667-
dc.relation.isPartOfJOURNAL OF THE AMERICAN CHEMICAL SOCIETY-
dc.citation.titleJOURNAL OF THE AMERICAN CHEMICAL SOCIETY-
dc.citation.volume140-
dc.citation.number46-
dc.citation.startPage15661-
dc.citation.endPage15667-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.subject.keywordPlusHYDROGEN-BOND STRUCTURE-
dc.subject.keywordPlusINFRARED-SPECTROSCOPY-
dc.subject.keywordPlusJUMP MECHANISM-
dc.subject.keywordPlusDYNAMICS-
dc.subject.keywordPlusIR-
dc.subject.keywordPlusEXCHANGE-
dc.subject.keywordPlusTRANSITION-
dc.subject.keywordPlusISSUES-
dc.subject.keywordPlusSTATE-
dc.subject.keywordPlusBAND-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Science > Department of Chemistry > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Cho, Min haeng photo

Cho, Min haeng
이과대학 (화학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE