Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Carbon microspheres with well-developed micro- and mesopores as excellent selenium host materials for lithium-selenium batteries with superior performances

Full metadata record
DC Field Value Language
dc.contributor.authorPark, Gi Dae-
dc.contributor.authorKim, Jong Hwa-
dc.contributor.authorLee, Jung-Kul-
dc.contributor.authorKang, Yun Chan-
dc.date.accessioned2021-09-02T03:18:57Z-
dc.date.available2021-09-02T03:18:57Z-
dc.date.created2021-06-19-
dc.date.issued2018-11-21-
dc.identifier.issn2050-7488-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/71816-
dc.description.abstractAs host materials for efficient selenium storage and utilization, porous carbon materials with optimized and suitable pore structures are important in the development of high-performance Li-Se batteries. Herein, the synergetic effect of micro- and mesopores of carbon materials on the conversion reaction of loaded chain-structured Se-n is studied for superior Li-Se batteries. Carbon microspheres with well-developed micro- and mesopores are synthesized by spray pyrolysis. Carbon-vanadium oxide composite microspheres synthesized by spray pyrolysis transform into microporous carbon microspheres (P-carbon) by etching of vanadium oxide. An additional post-treatment of the spray-pyrolysis product at 400 degrees C yields carbon microspheres (A4-carbon) with well-developed micro- and mesopores by etching of vanadium oxide. The presence of both micro- and mesopores in carbon is desirable to achieve a fast conversion reaction of Se-n in the Se-loaded carbon microspheres. The Se-loaded carbon microspheres with well-developed micro- and mesopores (A4-carbon/Se) exhibit higher capacities and stable long-term cycling performances compared with similar microspheres with only micropores (P-carbon/Se). The discharge capacities of P-carbon/Se and A4-carbon/Se at the 500(th) cycle at a current density of 0.5 A g(-1) are 403 and 582 mA h g(-1), respectively. Moreover, A4-carbon/Se microspheres exhibit a stable reversible capacity of 343 mA h g(-1) after 2000 cycles even at a high current density of 2.0 A g(-1); their capacity retention calculated from the 3(rd) cycle is 87%.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherROYAL SOC CHEMISTRY-
dc.subjectLI-SE BATTERIES-
dc.subjectELECTROCHEMICAL PROPERTIES-
dc.subjectCONFINED SELENIUM-
dc.subjectCATHODE-
dc.subjectSTORAGE-
dc.subjectSULFUR-
dc.subjectNANOSPHERES-
dc.subjectCOMPOSITE-
dc.subjectENERGY-
dc.subjectSIZE-
dc.titleCarbon microspheres with well-developed micro- and mesopores as excellent selenium host materials for lithium-selenium batteries with superior performances-
dc.typeArticle-
dc.contributor.affiliatedAuthorKang, Yun Chan-
dc.identifier.doi10.1039/c8ta08727j-
dc.identifier.scopusid2-s2.0-85056223347-
dc.identifier.wosid000449701900018-
dc.identifier.bibliographicCitationJOURNAL OF MATERIALS CHEMISTRY A, v.6, no.43, pp.21410 - 21418-
dc.relation.isPartOfJOURNAL OF MATERIALS CHEMISTRY A-
dc.citation.titleJOURNAL OF MATERIALS CHEMISTRY A-
dc.citation.volume6-
dc.citation.number43-
dc.citation.startPage21410-
dc.citation.endPage21418-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.subject.keywordPlusLI-SE BATTERIES-
dc.subject.keywordPlusELECTROCHEMICAL PROPERTIES-
dc.subject.keywordPlusCONFINED SELENIUM-
dc.subject.keywordPlusCATHODE-
dc.subject.keywordPlusSTORAGE-
dc.subject.keywordPlusSULFUR-
dc.subject.keywordPlusNANOSPHERES-
dc.subject.keywordPlusCOMPOSITE-
dc.subject.keywordPlusENERGY-
dc.subject.keywordPlusSIZE-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE