Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Revisiting the conversion reaction in ultrafine SnO2 nanoparticles for exceptionally high-capacity Li-ion battery anodes: The synergetic effect of graphene and copper

Full metadata record
DC Field Value Language
dc.contributor.authorKim, Da-Sol-
dc.contributor.authorShim, Hyun-Woo-
dc.contributor.authorDar, Mushtaq Ahmad-
dc.contributor.authorYoon, Hyunseok-
dc.contributor.authorSong, Hee Jo-
dc.contributor.authorKim, Dong-Wan-
dc.date.accessioned2021-09-02T03:30:06Z-
dc.date.available2021-09-02T03:30:06Z-
dc.date.created2021-06-19-
dc.date.issued2018-11-15-
dc.identifier.issn0925-8388-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/71839-
dc.description.abstractGenerally, in SnO2-based anode materials, the reversible alloying/dealloying reaction is the main Li-ion storage mechanism. Interestingly, these materials can show an exceptionally high capacity that is beyond the theoretical value (i.e., 783 mA h g(-1) based on Sn + 4.4Li(+) + 4.4e(-) (sic) Li4.4Sn reaction), owing to the reversibility of the reaction between Sn and Li2O to form SnOx (x = 1, 2), so-called conversion reaction. Herein, we prepare Cu-reduced graphene oxide (rGO)-SnO2 nanocomposites as a model system in order to demonstrate an effective strategy to improve the reversibility of the conversion reaction in SnO2. The incorporation of rGO can prevent the aggregation of SnO2 nanoparticles. Furthermore, the Cu-rGO-SnO2 nanocomposite exhibits the most improved conversion reaction reversibility, resulting in improved cycling performance and high capacity. Ex-situ transmission electron microscopy analysis confirms the high reversibility of the conversion as well as the alloying/dealloying reactions. Also, Cu nanoparticles promote the decomposition of amorphous Li2O, leading to enhancement of the conversion reaction between Sn and Li2O. Therefore, these results demonstrate a strategy for significantly improving the electrochemical performances of SnO2-based anodes for Li-ion batteries. (C) 2018 Elsevier B.V. All rights reserved.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherELSEVIER SCIENCE SA-
dc.subjectELECTROCHEMICAL PERFORMANCE-
dc.subjectOXIDE NANOPARTICLES-
dc.subjectCATHODE MATERIALS-
dc.subjectFACILE SYNTHESIS-
dc.subjectLITHIUM-
dc.subjectNANOCRYSTALS-
dc.subjectSTORAGE-
dc.subjectNANOSTRUCTURE-
dc.subjectELECTRODES-
dc.subjectCOMPOSITE-
dc.titleRevisiting the conversion reaction in ultrafine SnO2 nanoparticles for exceptionally high-capacity Li-ion battery anodes: The synergetic effect of graphene and copper-
dc.typeArticle-
dc.contributor.affiliatedAuthorKim, Dong-Wan-
dc.identifier.doi10.1016/j.jallcom.2018.08.076-
dc.identifier.scopusid2-s2.0-85051676196-
dc.identifier.wosid000449481200130-
dc.identifier.bibliographicCitationJOURNAL OF ALLOYS AND COMPOUNDS, v.769, pp.1113 - 1120-
dc.relation.isPartOfJOURNAL OF ALLOYS AND COMPOUNDS-
dc.citation.titleJOURNAL OF ALLOYS AND COMPOUNDS-
dc.citation.volume769-
dc.citation.startPage1113-
dc.citation.endPage1120-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaMetallurgy & Metallurgical Engineering-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.subject.keywordPlusELECTROCHEMICAL PERFORMANCE-
dc.subject.keywordPlusOXIDE NANOPARTICLES-
dc.subject.keywordPlusCATHODE MATERIALS-
dc.subject.keywordPlusFACILE SYNTHESIS-
dc.subject.keywordPlusLITHIUM-
dc.subject.keywordPlusNANOCRYSTALS-
dc.subject.keywordPlusSTORAGE-
dc.subject.keywordPlusNANOSTRUCTURE-
dc.subject.keywordPlusELECTRODES-
dc.subject.keywordPlusCOMPOSITE-
dc.subject.keywordAuthorSnO2-
dc.subject.keywordAuthorConversion reaction-
dc.subject.keywordAuthorGraphene-
dc.subject.keywordAuthorCu-
dc.subject.keywordAuthorLithium-ion battery-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Civil, Environmental and Architectural Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE