Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Effect of vibrational pre-excitation on sub-femtosecond structural evolution of water cation in (2)A(1) state

Full metadata record
DC Field Value Language
dc.contributor.authorRao, B. Jayachander-
dc.contributor.authorCho, Minhaeng-
dc.date.accessioned2021-09-02T03:30:53Z-
dc.date.available2021-09-02T03:30:53Z-
dc.date.created2021-06-19-
dc.date.issued2018-11-14-
dc.identifier.issn0301-0104-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/71846-
dc.description.abstractWe study the effects of vibrational excitation of neutral water molecule on sub-femtosecond nuclear dynamics of the (2)A(1) electronic state of cationic water and its isotopomers that are induced by high-harmonic generation (HHG) process. Both the photoelectron spectra and the autocorrelation functions of electronically excited states of M2O+ (M = H, D, and T) that are produced by Franck-Condon ionization of vibrationally pre-excited M2O to its (2)A(1) electronic state are calculated. HHG signals are also calculated from the square of the absolute value of autocorrelation functions. In addition, the ratio of the HHG signal of D2O+ to that of H2O+ and that between T2O+ and H2O+ are calculated with respect to time, for varying initially prepared vibrational state of the corresponding neutral molecule. Vibrational dynamics are notably strong on the( 2)A(1 )state of the cationic species, as the initial vibrational quantum number increases. The HHG signal of a heavier isotopomer is larger than that of water when the initial vibrational state is on its ground state. The expectation values of the bond length and bond angle show quasiperiodic oscillations with respect to time, which are ascribed to the observed overall rise in the HHG signals. Exceptionally strong vibrational dynamics observed on the (2)A(1) state potential energy surface of the cationic water molecule can be attributed to the excitation of water bending mode upon Franck-Condon ionization of the corresponding neutral molecule. Here, the observed peaks in the ratios of the HHG signals are theoretically explained in terms of time-evolving molecular structures at two different turning points of the( 2)A(1) surface. We anticipate that the present computational method of solving time-dependent Schrodinger equation would be of use to provide explanations on both ultrafast and chiroptical HHG spectroscopy of polyatomic molecules with certain handedness.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherELSEVIER-
dc.subjectHIGH-HARMONIC-GENERATION-
dc.subjectPHOTOELECTRON-SPECTROSCOPY-
dc.subjectSCHRODINGER-EQUATION-
dc.subjectMULTIPLE ORBITALS-
dc.subjectAMMONIA CATION-
dc.subjectDYNAMICS-
dc.subjectIONIZATION-
dc.subjectRESOLUTION-
dc.subjectMOLECULES-
dc.titleEffect of vibrational pre-excitation on sub-femtosecond structural evolution of water cation in (2)A(1) state-
dc.typeArticle-
dc.contributor.affiliatedAuthorCho, Minhaeng-
dc.identifier.doi10.1016/j.chemphys.2018.06.010-
dc.identifier.scopusid2-s2.0-85048776758-
dc.identifier.wosid000454412800044-
dc.identifier.bibliographicCitationCHEMICAL PHYSICS, v.515, pp.400 - 410-
dc.relation.isPartOfCHEMICAL PHYSICS-
dc.citation.titleCHEMICAL PHYSICS-
dc.citation.volume515-
dc.citation.startPage400-
dc.citation.endPage410-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryPhysics, Atomic, Molecular & Chemical-
dc.subject.keywordPlusHIGH-HARMONIC-GENERATION-
dc.subject.keywordPlusPHOTOELECTRON-SPECTROSCOPY-
dc.subject.keywordPlusSCHRODINGER-EQUATION-
dc.subject.keywordPlusMULTIPLE ORBITALS-
dc.subject.keywordPlusAMMONIA CATION-
dc.subject.keywordPlusDYNAMICS-
dc.subject.keywordPlusIONIZATION-
dc.subject.keywordPlusRESOLUTION-
dc.subject.keywordPlusMOLECULES-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Science > Department of Chemistry > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Cho, Min haeng photo

Cho, Min haeng
이과대학 (화학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE