Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Studies on Catalytic Activity of Hydrogen Peroxide Generation according to Au Shell Thickness of Pd/Au Nanocubes

Full metadata record
DC Field Value Language
dc.contributor.authorKim, Inho-
dc.contributor.authorSeo, Myung-gi-
dc.contributor.authorChoi, Changhyeok-
dc.contributor.authorKim, Jin Soo-
dc.contributor.authorJung, Euiyoung-
dc.contributor.authorHan, Geun-Ho-
dc.contributor.authorLee, Jae-Chul-
dc.contributor.authorHan, Sang Soo-
dc.contributor.authorAhn, Jae-Pyoung-
dc.contributor.authorJung, Yousung-
dc.contributor.authorLee, Kwan-Young-
dc.contributor.authorYu, Taekyung-
dc.date.accessioned2021-09-02T04:02:14Z-
dc.date.available2021-09-02T04:02:14Z-
dc.date.created2021-06-19-
dc.date.issued2018-11-07-
dc.identifier.issn1944-8244-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/71875-
dc.description.abstractThe catalytic properties of materials are determined by their electronic structures, which are based on the arrangement of atoms. Using precise calculations, synthesis, analysis, and catalytic activity studies, we demonstrate that changing the lattice constant of a material can modify its electronic structure and therefore its catalytic activity. Pd/Au core/shell nanocubes with a thin Au shell thickness of 1 nm exhibit high H2O2 production rates due to their improved oxygen binding energy (Delta E-O) and hydrogen binding energy (Delta E-H), as well as their reduced activation barriers for key reactions.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherAMER CHEMICAL SOC-
dc.subjectDENSITY-FUNCTIONAL THEORY-
dc.subjectBY-LAYER DEPOSITION-
dc.subjectELECTRONIC-PROPERTIES-
dc.subjectLATTICE-STRAIN-
dc.subjectGOLD-COPPER-
dc.subjectPALLADIUM-
dc.subjectOXYGEN-
dc.subjectPD-
dc.subjectREDUCTION-
dc.subjectH2O2-
dc.titleStudies on Catalytic Activity of Hydrogen Peroxide Generation according to Au Shell Thickness of Pd/Au Nanocubes-
dc.typeArticle-
dc.contributor.affiliatedAuthorLee, Jae-Chul-
dc.contributor.affiliatedAuthorLee, Kwan-Young-
dc.identifier.doi10.1021/acsami.8b14166-
dc.identifier.scopusid2-s2.0-85056127655-
dc.identifier.wosid000449887600038-
dc.identifier.bibliographicCitationACS APPLIED MATERIALS & INTERFACES, v.10, no.44, pp.38109 - 38116-
dc.relation.isPartOfACS APPLIED MATERIALS & INTERFACES-
dc.citation.titleACS APPLIED MATERIALS & INTERFACES-
dc.citation.volume10-
dc.citation.number44-
dc.citation.startPage38109-
dc.citation.endPage38116-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.subject.keywordPlusDENSITY-FUNCTIONAL THEORY-
dc.subject.keywordPlusBY-LAYER DEPOSITION-
dc.subject.keywordPlusELECTRONIC-PROPERTIES-
dc.subject.keywordPlusLATTICE-STRAIN-
dc.subject.keywordPlusGOLD-COPPER-
dc.subject.keywordPlusPALLADIUM-
dc.subject.keywordPlusOXYGEN-
dc.subject.keywordPlusPD-
dc.subject.keywordPlusREDUCTION-
dc.subject.keywordPlusH2O2-
dc.subject.keywordAuthorPd/Au core/shell nanocubes-
dc.subject.keywordAuthorthin Au layer-
dc.subject.keywordAuthorlattice strain-
dc.subject.keywordAuthorcalculation-
dc.subject.keywordAuthorH2O2 synthesis-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles
College of Engineering > Department of Chemical and Biological Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Kwan Young photo

Lee, Kwan Young
공과대학 (화공생명공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE