Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Pattern matching for industrial object recognition using geometry-based vector mapping descriptors

Authors
You, Oung TakPae, Dong SungKim, Sung HeeKim, Kyeong EunLim, Myo TaegKang, Tae Koo
Issue Date
11월-2018
Publisher
SPRINGER
Keywords
Geometric features; Vector mapping descriptors; Matching; Geometric transformation; Partial distortion or occlusion
Citation
PATTERN ANALYSIS AND APPLICATIONS, v.21, no.4, pp.1167 - 1183
Indexed
SCIE
SCOPUS
Journal Title
PATTERN ANALYSIS AND APPLICATIONS
Volume
21
Number
4
Start Page
1167
End Page
1183
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/71929
DOI
10.1007/s10044-018-0738-8
ISSN
1433-7541
Abstract
Object recognition has always been a troublesome issue for computer vision. Despite continuous researches, it still remains a challenge to define features, match the corresponding features, and develop accuracy and precision concurrently while considering computational speed and robustness at the same time. In this paper, we propose a novel feature matching method called the vector mapping descriptor (VMD) to overcome existing issues. We implement sub-pixel units for edge detection to improve the accuracy of invariant features, after which sub-pixel unit edges are enhanced by least squares error estimation, and more accurate geometric features are extracted from the enhanced sub-pixel unit edges of an object's geometric shape. We defined two geometric features, namely a circle center and a line intersection, used to construct the VMD, which represents the correlation of features consisting of the Euclidean distance and angle. The geometry-based VMD for pattern matching is proposed to match salient feature points between different images effectively under geometric transformation irrespective of missing or additional feature points. The VMD enabled one-to-one feature matching of corresponding grouped feature points from different images resulting in complete object matching. The proposed matching algorithm was invariant to geometric transformation such as translation, rotation, and scale differences and was also able cope with partial distortion or occlusion. Experiments were conducted with an industrial camera to show that our system can be executed in real time.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Electrical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lim, Myo taeg photo

Lim, Myo taeg
공과대학 (전기전자공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE