Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Direct Discretization Method for the Cahn-Hilliard Equation on an Evolving Surface

Full metadata record
DC Field Value Language
dc.contributor.authorLi, Yibao-
dc.contributor.authorQi, Xuelin-
dc.contributor.authorKim, Junseok-
dc.date.accessioned2021-09-02T04:55:38Z-
dc.date.available2021-09-02T04:55:38Z-
dc.date.created2021-06-18-
dc.date.issued2018-11-
dc.identifier.issn0885-7474-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/72392-
dc.description.abstractWe propose a simple and efficient direct discretization scheme for solving the Cahn-Hilliard (CH) equation on an evolving surface. By using a conservation law and transport formulae, we derive the CH equation on evolving surfaces. An evolving surface is discretized using an unstructured triangular mesh. The discrete CH equation is defined on the surface mesh and its dual surface polygonal tessellation. The evolving triangular surfaces are then realized by moving the surface nodes according to a given velocity field. The proposed scheme is based on the Crank-Nicolson scheme and a linearly stabilized splitting scheme. The scheme is second-order accurate, with respect to both space and time. The resulting system of discrete equations is easy to implement, and is solved by using an efficient biconjugate gradient stabilized method. Several numerical experiments are presented to demonstrate the performance and effectiveness of the proposed numerical scheme.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherSPRINGER/PLENUM PUBLISHERS-
dc.subjectPARTIAL-DIFFERENTIAL-EQUATIONS-
dc.subjectDENSITY-FUNCTIONAL THEORY-
dc.subjectIMMERSED BOUNDARY METHOD-
dc.subject2ND-ORDER TIME-ACCURATE-
dc.subjectPHASE-FIELD MODELS-
dc.subjectNUMERICAL-METHOD-
dc.subjectCURVED SURFACES-
dc.subjectCELL-GROWTH-
dc.subjectSEPARATION-
dc.subjectCURVATURE-
dc.titleDirect Discretization Method for the Cahn-Hilliard Equation on an Evolving Surface-
dc.typeArticle-
dc.contributor.affiliatedAuthorKim, Junseok-
dc.identifier.doi10.1007/s10915-018-0742-6-
dc.identifier.scopusid2-s2.0-85047663085-
dc.identifier.wosid000446594600020-
dc.identifier.bibliographicCitationJOURNAL OF SCIENTIFIC COMPUTING, v.77, no.2, pp.1147 - 1163-
dc.relation.isPartOfJOURNAL OF SCIENTIFIC COMPUTING-
dc.citation.titleJOURNAL OF SCIENTIFIC COMPUTING-
dc.citation.volume77-
dc.citation.number2-
dc.citation.startPage1147-
dc.citation.endPage1163-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMathematics-
dc.relation.journalWebOfScienceCategoryMathematics, Applied-
dc.subject.keywordPlusPHASE-FIELD MODELS-
dc.subject.keywordPlusNUMERICAL-METHOD-
dc.subject.keywordPlusCURVED SURFACES-
dc.subject.keywordPlusCELL-GROWTH-
dc.subject.keywordPlusSEPARATION-
dc.subject.keywordPlusCURVATURE-
dc.subject.keywordPlusPARTIAL-DIFFERENTIAL-EQUATIONS-
dc.subject.keywordPlusDENSITY-FUNCTIONAL THEORY-
dc.subject.keywordPlusIMMERSED BOUNDARY METHOD-
dc.subject.keywordPlus2ND-ORDER TIME-ACCURATE-
dc.subject.keywordAuthorCahn-Hilliard equation-
dc.subject.keywordAuthorEvolving surface-
dc.subject.keywordAuthorLaplace-Beltrami operator-
dc.subject.keywordAuthorTriangular surface mesh-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Science > Department of Mathematics > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Jun seok photo

Kim, Jun seok
이과대학 (수학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE