Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Measuring the competition between bimolecular charge recombination and charge transport in organic solar cells under operating conditions

Full metadata record
DC Field Value Language
dc.contributor.authorHeiber, Michael C.-
dc.contributor.authorOkubo, Takashi-
dc.contributor.authorKo, Seo-Jin-
dc.contributor.authorLuginbuhl, Benjamin R.-
dc.contributor.authorRan, Niva A.-
dc.contributor.authorWang, Ming-
dc.contributor.authorWang, Hengbin-
dc.contributor.authorUddin, Mohammad Afsar-
dc.contributor.authorWoo, Han Young-
dc.contributor.authorBazan, Guillermo C.-
dc.contributor.authorThuc-Quyen Nguyen-
dc.date.accessioned2021-09-02T05:18:18Z-
dc.date.available2021-09-02T05:18:18Z-
dc.date.created2021-06-19-
dc.date.issued2018-10-01-
dc.identifier.issn1754-5692-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/72525-
dc.description.abstractThe rational design of new high performance materials for organic photovoltaic (OPV) applications is largely inhibited by a lack of design rules for materials that have slow bimolecular charge recombination. Due to the complex device physics present in OPVs, rigorous and reliable measurement techniques for charge transport and charge recombination are needed to construct improved physical models that can guide materials development and discovery. Here, we develop a new technique called impedance-photocurrent device analysis (IPDA) to quantitatively characterize the competition between charge extraction and charge recombination under steady state operational conditions. The measurements are performed on actual lab scale solar cells, have mild equipment requirements, and can be integrated into normal device fabrication and testing workflows. We perform IPDA tests on a broad set of devices with varying polymer:fullerene blend chemistry and processing conditions. Results from the IPDA technique exhibit significantly improved reliability and self-consistency compared to the open-circuit voltage decay technique (OCVD). IPDA measurements also reveal a significant negative electric field dependence of the bimolecular recombination coefficient in high fill factor devices, a finding which is inaccessible to most other common techniques and indicates that many of these techniques may overestimate the value that is most relevant for describing device performance. Future work utilizing IPDA to build structure-property relationships for bimolecular recombination will lead to enhanced design rules for creating efficient OPVs that are suitable for commercialization.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherROYAL SOC CHEMISTRY-
dc.subjectOPEN-CIRCUIT VOLTAGE-
dc.subjectFILL FACTOR-
dc.subjectNONGEMINATE RECOMBINATION-
dc.subjectGEMINATE RECOMBINATION-
dc.subjectBULK HETEROJUNCTIONS-
dc.subjectDENSITY DEPENDENCE-
dc.subjectCARRIER MOBILITY-
dc.subjectFIELD-DEPENDENCE-
dc.subjectTRANSFER STATES-
dc.subjectEXTRACTION-
dc.titleMeasuring the competition between bimolecular charge recombination and charge transport in organic solar cells under operating conditions-
dc.typeArticle-
dc.contributor.affiliatedAuthorWoo, Han Young-
dc.identifier.doi10.1039/c8ee01559g-
dc.identifier.scopusid2-s2.0-85055321204-
dc.identifier.wosid000448339100026-
dc.identifier.bibliographicCitationENERGY & ENVIRONMENTAL SCIENCE, v.11, no.10, pp.3019 - 3032-
dc.relation.isPartOfENERGY & ENVIRONMENTAL SCIENCE-
dc.citation.titleENERGY & ENVIRONMENTAL SCIENCE-
dc.citation.volume11-
dc.citation.number10-
dc.citation.startPage3019-
dc.citation.endPage3032-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaEnvironmental Sciences & Ecology-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalWebOfScienceCategoryEnvironmental Sciences-
dc.subject.keywordPlusOPEN-CIRCUIT VOLTAGE-
dc.subject.keywordPlusFILL FACTOR-
dc.subject.keywordPlusNONGEMINATE RECOMBINATION-
dc.subject.keywordPlusGEMINATE RECOMBINATION-
dc.subject.keywordPlusBULK HETEROJUNCTIONS-
dc.subject.keywordPlusDENSITY DEPENDENCE-
dc.subject.keywordPlusCARRIER MOBILITY-
dc.subject.keywordPlusFIELD-DEPENDENCE-
dc.subject.keywordPlusTRANSFER STATES-
dc.subject.keywordPlusEXTRACTION-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Science > Department of Chemistry > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE