Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Superhydrophobic plasmonic nanoarchitectures based on aluminum hydroxide nanotemplates

Full metadata record
DC Field Value Language
dc.contributor.authorYoon, Daesung-
dc.contributor.authorChae, Songhwa-
dc.contributor.authorKim, Wook-
dc.contributor.authorLee, Donghun-
dc.contributor.authorChoi, Dukhyun-
dc.date.accessioned2021-09-02T06:17:03Z-
dc.date.available2021-09-02T06:17:03Z-
dc.date.created2021-06-16-
dc.date.issued2018-09-26-
dc.identifier.issn2040-3364-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/73057-
dc.description.abstractThe combined characteristics of non-wettabililty and strong plasmonic resonances make superhydro-phobic plasmonic nanostructures an appealing tool for ultrasensitive detection in surface-enhanced Raman scattering (SERS). However, inducing superhydrophobic surfaces on originally hydrophilic metals (e.g., gold, silver) while achieving high plasmonic enhancement requires sophisticated surface engineering and often involves complex fabrication processes. In this article, we design and fabricate cost effective and scalable plasmonic nanostructures with both superhydrophobicity (a water contact angle > 160 degrees) and high SERS signal (enhancement factor approximate to 10(6)). Silver-coated aluminum hydroxide nanotemplates are obtained from a simple wet process, followed by thermal evaporation of silver nanoparticles. We find that the largest SERS enhancement is obtained when the contact angle is maximum. This confirms that the control of surface wettability is an effective way to improve detection sensitivity in SERS measurements. The nanotemplates developed in this study could be applied further in various applications, including microfluidic biomolecular optical sensors, photocatalysts, and optoelectronic devices.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherROYAL SOC CHEMISTRY-
dc.subjectTHIN-FILMS-
dc.subjectSURFACE-
dc.subjectFABRICATION-
dc.subjectWETTABILITY-
dc.subjectARRAYS-
dc.titleSuperhydrophobic plasmonic nanoarchitectures based on aluminum hydroxide nanotemplates-
dc.typeArticle-
dc.contributor.affiliatedAuthorLee, Donghun-
dc.identifier.doi10.1039/c8nr04873h-
dc.identifier.scopusid2-s2.0-85054032364-
dc.identifier.wosid000450932100020-
dc.identifier.bibliographicCitationNANOSCALE, v.10, no.36, pp.17125 - 17130-
dc.relation.isPartOfNANOSCALE-
dc.citation.titleNANOSCALE-
dc.citation.volume10-
dc.citation.number36-
dc.citation.startPage17125-
dc.citation.endPage17130-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.subject.keywordPlusTHIN-FILMS-
dc.subject.keywordPlusSURFACE-
dc.subject.keywordPlusFABRICATION-
dc.subject.keywordPlusWETTABILITY-
dc.subject.keywordPlusARRAYS-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Science > Department of Physics > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE