Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Towards exact molecular dynamics simulations with machine-learned force fields

Full metadata record
DC Field Value Language
dc.contributor.authorChmiela, Stefan-
dc.contributor.authorSauceda, Huziel E.-
dc.contributor.authorMueller, Klaus-Robert-
dc.contributor.authorTkatchenko, Alexandre-
dc.date.accessioned2021-09-02T06:18:23Z-
dc.date.available2021-09-02T06:18:23Z-
dc.date.created2021-06-16-
dc.date.issued2018-09-24-
dc.identifier.issn2041-1723-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/73068-
dc.description.abstractMolecular dynamics (MD) simulations employing classical force fields constitute the cornerstone of contemporary atomistic modeling in chemistry, biology, and materials science. However, the predictive power of these simulations is only as good as the underlying interatomic potential. Classical potentials often fail to faithfully capture key quantum effects in molecules and materials. Here we enable the direct construction of flexible molecular force fields from high-level ab initio calculations by incorporating spatial and temporal physical symmetries into a gradient-domain machine learning (sGDML) model in an automatic data-driven way. The developed sGDML approach faithfully reproduces global force fields at quantum-chemical CCSD(T) level of accuracy and allows converged molecular dynamics simulations with fully quantized electrons and nuclei. We present MD simulations, for flexible molecules with up to a few dozen atoms and provide insights into the dynamical behavior of these molecules. Our approach provides the key missing ingredient for achieving spectroscopic accuracy in molecular simulations.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherNATURE PUBLISHING GROUP-
dc.subjectETHANOL-
dc.subjectAPPROXIMATION-
dc.subjectPOTENTIALS-
dc.subjectDIMERS-
dc.subjectMODEL-
dc.titleTowards exact molecular dynamics simulations with machine-learned force fields-
dc.typeArticle-
dc.contributor.affiliatedAuthorMueller, Klaus-Robert-
dc.identifier.doi10.1038/s41467-018-06169-2-
dc.identifier.scopusid2-s2.0-85053868687-
dc.identifier.wosid000445329000022-
dc.identifier.bibliographicCitationNATURE COMMUNICATIONS, v.9-
dc.relation.isPartOfNATURE COMMUNICATIONS-
dc.citation.titleNATURE COMMUNICATIONS-
dc.citation.volume9-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalWebOfScienceCategoryMultidisciplinary Sciences-
dc.subject.keywordPlusETHANOL-
dc.subject.keywordPlusAPPROXIMATION-
dc.subject.keywordPlusPOTENTIALS-
dc.subject.keywordPlusDIMERS-
dc.subject.keywordPlusMODEL-
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Artificial Intelligence > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE