Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Understanding possible underlying mechanism in declining germicidal efficiency of UV-LED reactor

Full metadata record
DC Field Value Language
dc.contributor.authorLee, Hyunkyung-
dc.contributor.authorJin, Yongxun-
dc.contributor.authorHong, Seungkwan-
dc.date.accessioned2021-09-02T08:33:25Z-
dc.date.available2021-09-02T08:33:25Z-
dc.date.created2021-06-16-
dc.date.issued2018-08-
dc.identifier.issn1011-1344-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/74200-
dc.description.abstractSince ultraviolet light emitting diodes (UV-LEDs) have emerged as an alternative light source for UV disinfection systems, enhancement of reactor performance is a demanding challenge to promote its practical application in water treatment process. This study explored the underlying mechanism of the inefficiency observed in flow-through mode UV disinfection tests to improve the light utilization of UV-LED applications. In particular, the disinfection performance of UV-LED reactors was evaluated using two different flow channel types, reservoir and pathway systems, in order to elucidate the impact of physical circumstances on germicidal efficiency as the light profile was adjusted. Overall, a significant reduction in germicidal efficiency was observed when exposure time was prolonged or a mixing chamber was integrated. Zeta analysis revealed that the repulsion rate between microorganisms decreased with UV fluence transfer, and that change might cause the shielding effect of UV delivery to target microorganisms. In line with the above findings, the reduction in efficiency intensified when opportunities for microbial collision increased. Thus, UV induced microbial aggregation was implicated as being a disinfection hindering factor, exerting its effect through uneven UV illumination. Ultimately, the results refuted the prevailing belief that UV has a cumulative effect. We found that the reservoir system achieved worse performance than the pathway system despite it providing 15 times higher UV fluence: the differences in germicidal efficiency were 1-log, 1.4-log and 1.7-log in the cases of P.aeruginosa, E.coli and S.aureus, respectively.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherELSEVIER SCIENCE SA-
dc.subjectLIGHT-EMITTING-DIODES-
dc.subjectWATER DISINFECTION-
dc.subjectPHOTOCATALYTIC REACTOR-
dc.subjectULTRAVIOLET-LIGHT-
dc.subjectINACTIVATION-
dc.subjectAGGREGATION-
dc.subjectBACTERIA-
dc.subjectPERFORMANCE-
dc.subjectOXIDATION-
dc.subjectVIRUSES-
dc.titleUnderstanding possible underlying mechanism in declining germicidal efficiency of UV-LED reactor-
dc.typeArticle-
dc.contributor.affiliatedAuthorHong, Seungkwan-
dc.identifier.doi10.1016/j.jphotobiol.2018.06.001-
dc.identifier.scopusid2-s2.0-85048541659-
dc.identifier.wosid000440960200017-
dc.identifier.bibliographicCitationJOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY, v.185, pp.136 - 142-
dc.relation.isPartOfJOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY-
dc.citation.titleJOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY-
dc.citation.volume185-
dc.citation.startPage136-
dc.citation.endPage142-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaBiochemistry & Molecular Biology-
dc.relation.journalResearchAreaBiophysics-
dc.relation.journalWebOfScienceCategoryBiochemistry & Molecular Biology-
dc.relation.journalWebOfScienceCategoryBiophysics-
dc.subject.keywordPlusLIGHT-EMITTING-DIODES-
dc.subject.keywordPlusWATER DISINFECTION-
dc.subject.keywordPlusPHOTOCATALYTIC REACTOR-
dc.subject.keywordPlusULTRAVIOLET-LIGHT-
dc.subject.keywordPlusINACTIVATION-
dc.subject.keywordPlusAGGREGATION-
dc.subject.keywordPlusBACTERIA-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusOXIDATION-
dc.subject.keywordPlusVIRUSES-
dc.subject.keywordAuthorUltraviolet-
dc.subject.keywordAuthorDisinfection-
dc.subject.keywordAuthorUV-LED-
dc.subject.keywordAuthorFlow-through reactor-
dc.subject.keywordAuthorMicrobial aggregation-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Civil, Environmental and Architectural Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Hong, Seung kwan photo

Hong, Seung kwan
공과대학 (건축사회환경공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE