Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Multi-View Missing Data Completion

Full metadata record
DC Field Value Language
dc.contributor.authorZhang, Lei-
dc.contributor.authorZhao, Yao-
dc.contributor.authorZhu, Zhenfeng-
dc.contributor.authorShen, Dinggang-
dc.contributor.authorJi, Shuiwang-
dc.date.accessioned2021-09-02T09:04:11Z-
dc.date.available2021-09-02T09:04:11Z-
dc.date.created2021-06-16-
dc.date.issued2018-07-01-
dc.identifier.issn1041-4347-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/74382-
dc.description.abstractA growing number of multi-view data arises naturally in many scenarios, including medical diagnosis, webpage classification, and multimedia analysis. A challenge in learning from multi-view data is that not all instances are fully represented in all views, resulting in missing view data. In this paper, we focus on feature-level completion for missing view of multi-view data. Aiming at capturing both semantic complementarity and identical distribution among different views, an Isomorphic Linear Correlation Analysis (ILCA) method is proposed to linearly map multi-view data to a feature-isomorphic subspace through learning a set of excellent isomorphic features, thereby unfolding the shared information from different views. Meanwhile, we assume that missing view obeys normal distribution. Then, the missing view data matrix can be modeled as a low-rank component plus a sparse contribution. Thus, to accomplish missing view completion, an Identical Distribution Pursuit Completion (IDPC) model based on the learned features is proposed, in which the identical distribution constraint of missing view to the other available one in the feature-isomorphic subspace is fully exploited. Comprehensive experiments on several multi-view datasets demonstrate that our proposed framework yields promising results.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherIEEE COMPUTER SOC-
dc.subjectCANONICAL CORRELATION-ANALYSIS-
dc.subjectFACE RECOGNITION-
dc.subjectFEATURE FUSION-
dc.subjectMATRIX-
dc.subjectCLASSIFICATION-
dc.subjectOPTIMIZATION-
dc.subjectFRAMEWORK-
dc.subjectALGORITHM-
dc.titleMulti-View Missing Data Completion-
dc.typeArticle-
dc.contributor.affiliatedAuthorShen, Dinggang-
dc.identifier.doi10.1109/TKDE.2018.2791607-
dc.identifier.scopusid2-s2.0-85041191108-
dc.identifier.wosid000434283300007-
dc.identifier.bibliographicCitationIEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, v.30, no.7, pp.1296 - 1309-
dc.relation.isPartOfIEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING-
dc.citation.titleIEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING-
dc.citation.volume30-
dc.citation.number7-
dc.citation.startPage1296-
dc.citation.endPage1309-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalWebOfScienceCategoryComputer Science, Artificial Intelligence-
dc.relation.journalWebOfScienceCategoryComputer Science, Information Systems-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.subject.keywordPlusCANONICAL CORRELATION-ANALYSIS-
dc.subject.keywordPlusFACE RECOGNITION-
dc.subject.keywordPlusFEATURE FUSION-
dc.subject.keywordPlusMATRIX-
dc.subject.keywordPlusCLASSIFICATION-
dc.subject.keywordPlusOPTIMIZATION-
dc.subject.keywordPlusFRAMEWORK-
dc.subject.keywordPlusALGORITHM-
dc.subject.keywordAuthorMulti-view learning-
dc.subject.keywordAuthormissing view-
dc.subject.keywordAuthorfeature-level completion-
dc.subject.keywordAuthorsparse learning-
dc.subject.keywordAuthortrace norm-
dc.subject.keywordAuthoroptimization-
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Artificial Intelligence > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE