Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Mechanically inferior constituents in spider silk result in mechanically superior fibres by adaptation to harsh hydration conditions: a molecular dynamics study

Authors
Kim, YoonjungLee, MyeongsangBaek, InchulYoon, TaeyoungNa, Sungsoo
Issue Date
7월-2018
Publisher
ROYAL SOC
Keywords
spider silk; material characterization; molecular dynamics; hydration effects
Citation
JOURNAL OF THE ROYAL SOCIETY INTERFACE, v.15, no.144
Indexed
SCIE
SCOPUS
Journal Title
JOURNAL OF THE ROYAL SOCIETY INTERFACE
Volume
15
Number
144
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/74485
DOI
10.1098/rsif.2018.0305
ISSN
1742-5689
Abstract
Spider silk exhibits mechanical properties such as high strength and toughness that are superior to those of any man- made fibre (Bourzac 2015 Nature 519, S4-S6 (doi:10.1038/519S4a)). This high strength and toughness originates from a combination of the crystalline (exhibiting robust strength) and amorphous (exhibiting superb extensibility) regions present in the silk (Asakura et al. 2015 Macromolecules 48, 2345-2357 (doi:10.1021/acs.macromol.5b00160)). The crystalline regions comprise a mixture of polyalanine and poly-glycine-alanine. Poly-alanine is expected to be stronger than poly-glycine-alanine, because alanine exhibits greater interactions between the strands than glycine (Tokareva et al. 2014 Acta Biomater. 10, 1612-1626 (doi:10.1016/j.actbio.2013.08.020)). We connect this characteristic sequence to the interactions observed upon the hydration of spider silk. Like most proteinaceous materials, spider silks become highly brittle upon dehydration, and thus water collection is crucial to maintaining its toughness (Gosline et al. 1986 Endeavour 10, 37-43 (doi:10.1016/0160-9327(86)90049-9)). We report on the molecular dynamic simulations of spider silk structures with different sequences for the crystalline region of the silk structures, of wild-type (WT), poly-alanine, and poly-glycine-alanine. We reveal that the characteristic sequence of spider silk results in the b-sheets being maintained as the degree of hydration changes and that the high water collection capabilities of WT spider silk sequence prevent the silk from becoming brittle and weak in dry conditions. The characteristic crystalline sequence of spider dragline silk is therefore relevant not for maximizing the interactions between the strands but for adaption to changing hydration conditions to maintain an optimal performance even in harsh conditions.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Mechanical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher NA, Sung Soo photo

NA, Sung Soo
공과대학 (기계공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE