Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Three-dimensional porous microspheres comprising hollow Fe2O3 nanorods/CNT building blocks with superior electrochemical performance for lithium ion batteries

Full metadata record
DC Field Value Language
dc.contributor.authorPark, Seung-Keun-
dc.contributor.authorPark, Gi Dae-
dc.contributor.authorKang, Yun Chan-
dc.date.accessioned2021-09-02T10:05:21Z-
dc.date.available2021-09-02T10:05:21Z-
dc.date.created2021-06-16-
dc.date.issued2018-06-21-
dc.identifier.issn2040-3364-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/74901-
dc.description.abstractIt is highly desirable to develop anode materials with rational architectures for lithium ion batteries to achieve high-performance electrochemical properties. In this study, three-dimensional porous composite microspheres comprising hollow Fe2O3 nanorods/carbon nanotube (CNT) building blocks are successfully constructed by direct deposition and further thermal transformation of beta-FeOOH nanorods on CNT porous microspheres. The CNT porous microsphere, which is prepared by a spray pyrolysis, provides ample sites for the direct growth of beta-FeOOH nanorods. During the further oxidation process, the beta-FeOOH nanorods are transformed into hollow Fe2O3 nanorods as a result of dehydroxylation and lattice shrinkage, resulting in the formation of hollow Fe2O3 nanorods/CNT porous microspheres. Such a hierarchical structure of composite microspheres not only facilitates electrolyte accessibility but also offers conductive networks for electrons during electrochemical reactions. Accordingly, the electrodes exhibit a high discharge capacity of 1307 mA h g(-1) after 300 cycles at a current density of 1 A g(-1); this is associated with an excellent capacity retention of 84%, which is calculated from the initial cycle. In addition, the composite delivers a discharge capacity of 703 mA h g(-1) at a current density of 15 A g(-1).-
dc.languageEnglish-
dc.language.isoen-
dc.publisherROYAL SOC CHEMISTRY-
dc.subjectREDUCED GRAPHENE OXIDE-
dc.subjectLONG CYCLE LIFE-
dc.subjectANODE MATERIAL-
dc.subjectSTORAGE-
dc.subjectNANOPARTICLES-
dc.subjectALPHA-FE2O3-
dc.subjectCOMPOSITES-
dc.subjectELECTRODES-
dc.subjectCONVERSION-
dc.subjectNANOSHEETS-
dc.titleThree-dimensional porous microspheres comprising hollow Fe2O3 nanorods/CNT building blocks with superior electrochemical performance for lithium ion batteries-
dc.typeArticle-
dc.contributor.affiliatedAuthorKang, Yun Chan-
dc.identifier.doi10.1039/c8nr02686f-
dc.identifier.scopusid2-s2.0-85048685834-
dc.identifier.wosid000435358600039-
dc.identifier.bibliographicCitationNANOSCALE, v.10, no.23, pp.11150 - 11157-
dc.relation.isPartOfNANOSCALE-
dc.citation.titleNANOSCALE-
dc.citation.volume10-
dc.citation.number23-
dc.citation.startPage11150-
dc.citation.endPage11157-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.subject.keywordPlusREDUCED GRAPHENE OXIDE-
dc.subject.keywordPlusLONG CYCLE LIFE-
dc.subject.keywordPlusANODE MATERIAL-
dc.subject.keywordPlusSTORAGE-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusALPHA-FE2O3-
dc.subject.keywordPlusCOMPOSITES-
dc.subject.keywordPlusELECTRODES-
dc.subject.keywordPlusCONVERSION-
dc.subject.keywordPlusNANOSHEETS-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE