Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Humidity-Independent Oxide Semiconductor Chemiresistors Using Terbium-Doped SnO2 Yolk-Shell Spheres for Real-Time Breath Analysis

Authors
Kwak, Chang-HoonKim, Tae-HyungJeong, Seong-YongYoon, Ji-WonKim, Jun-SikLee, Jong-Heun
Issue Date
6-6월-2018
Publisher
AMER CHEMICAL SOC
Keywords
Tb-doped SnO2; gas sensor; yolk-shell spheres; humidity dependence; acetone; diabetes
Citation
ACS APPLIED MATERIALS & INTERFACES, v.10, no.22, pp.18886 - 18894
Indexed
SCIE
SCOPUS
Journal Title
ACS APPLIED MATERIALS & INTERFACES
Volume
10
Number
22
Start Page
18886
End Page
18894
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/74958
DOI
10.1021/acsami.8b04245
ISSN
1944-8244
Abstract
The chemiresistive sensing characteristics of metal oxide gas sensors depend closely on ambient humidity. Herein, we report that gas sensors using Tb-doped SnO2 yolk-shell spheres can be used for reliable acetone detection, regardless of the variations in humidity. Pure SnO2 and Tb-doped SnO2 yolk-shell spheres were prepared via ultrasonic spray pyrolysis and their chemiresistive sensing characteristics were studied. The sensor resistance and gas response of the pure SnO2 yolk-shell spheres significantly changed and deteriorated upon exposure to moisture. In stark contrast, the Tb-doped SnO2 yolk-shell spheres exhibited similar gas responses and sensor resistances in both dry and humid [relative humidity (RH) 80%] atmospheres. In addition, the Tb-doped SnO2 yolk-shell sensors showed a high gas response (resistance ratio) of 1.21 to the sub-ppm-levels (50 ppb) of acetone with low responses to the other interference gases. The effects of Tb oxide and the chemical interactions among the Tb oxide, SnO2, and water vapor on this humidity-independent gas sensing behavior of the Tb-doped SnO2 yolk-shell sensors were investigated. This strategy can provide a new road to achieve highly sensitive, selective, and humidity-independent sensing of acetone, which will facilitate miniaturized and real-time exhaled breath analysis for diagnosing diabetes.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE