Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

(Semi)ladder-Type Bithiophene Imide-Based All-Acceptor Semiconductors: Synthesis, Structure-Property Correlations, and Unipolar n-Type Transistor Performance

Authors
Wang, YingfengGuo, HanHarbuzaru, AlexandraUddin, Mohammad AfsarArrechea-Marcos, IratxeLing, ShaohuaYu, JianweiTang, YuminSun, HuiliangLopez Navarrete, Juan TeodomiroPonce Ortiz, RocioWoo, Han YoungGuo, Xugang
Issue Date
16-5월-2018
Publisher
AMER CHEMICAL SOC
Citation
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, v.140, no.19, pp.6095 - 6108
Indexed
SCIE
SCOPUS
Journal Title
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume
140
Number
19
Start Page
6095
End Page
6108
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/75524
DOI
10.1021/jacs.8b02144
ISSN
0002-7863
Abstract
Development of high-performance unipolar n-type organic semiconductors still remains as a great challenge. In this work, all-acceptor bithiophene imide-based ladder-type small molecules BTIn and semiladder-type homopolymers PBTIn (n = 1-5) were synthesized, and their structure-property correlations were studied in depth. It was found that Pd-catalyzed Stille coupling is superior to Ni-mediated Yamamoto coupling to produce polymers with higher molecular weight and improved polymer quality, thus leading to greatly increased electron mobility (mu(e)). Due to their all-acceptor backbone, these polymers all exhibit unipolar n-type transport in organic thin-film transistors, accompanied by low off-currents (10(-10)-10(-9) A), large on/off current ratios (10(6)), and small threshold voltages (similar to 15-25 V). The highest kte, up to 3.71 cm(2) V-1 s(-1), is attained from PBTI1 with the shortest monomer unit. As the monomer size is extended, the mu(e) drops by 2 orders to 0.014 cm(2) for PBTIS. This monotonic decrease of ye was also observed in their homologous BTIn small molecules. This trend of mobility decrease is in good agreement with the evolvement of disordered phases within the film, as revealed by Raman spectroscopy and X-ray diffraction measurements. The extension of the ladder-type building blocks appears to have a large impact on the motion freedom of the building blocks and the polymer chains during film formation, thus negatively affecting film morphology and charge carrier mobility. The result indicates that synthesizing building blocks with more extended ladder-type backbone does not necessarily lead to improved mobilities. This study marks a significant advance in the performance of all-acceptor-type polymers as unipolar electron transporting materials and provides useful guidelines for further development of (semi)ladder-type molecular and polymeric semiconductors for applications in organic electronics.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Science > Department of Chemistry > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE