Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Sub-Network Kernels for Measuring Similarity of Brain Connectivity Networks in Disease Diagnosis

Authors
Jie, BiaoLiu, MingxiaZhang, DaoqiangShen, Dinggang
Issue Date
5월-2018
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Keywords
Graph kernel; brain network; Alzheimer' s disease (AD); mild cognitive impairment (MCI); classification
Citation
IEEE TRANSACTIONS ON IMAGE PROCESSING, v.27, no.5, pp.2340 - 2353
Indexed
SCIE
SCOPUS
Journal Title
IEEE TRANSACTIONS ON IMAGE PROCESSING
Volume
27
Number
5
Start Page
2340
End Page
2353
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/75676
DOI
10.1109/TIP.2018.2799706
ISSN
1057-7149
Abstract
As a simple representation of interactions among distributed brain regions, brain networks have been widely applied to automated diagnosis of brain diseases, such as Alzheimer's disease (AD) and its early stage, i.e., mild cognitive impairment (MCI). In brain network analysis, a challenging task is how to measure the similarity between a pair of networks. Although many graph kernels (i.e., kernels defined on graphs) have been proposed for measuring the topological similarity of a pair of brain networks, most of them are defined using general graphs, thus ignoring the uniqueness of each node in brain networks. That is, each node in a brain network denotes a particular brain region, which is a specific characteristics of brain networks. Accordingly, in this paper, we construct a novel sub-network kernel for measuring the similarity between a pair of brain networks and then apply it to brain disease classification. Different from current graph kernels, our proposed sub-network kernel not only takes into account the inherent characteristic of brain networks, but also captures multi-level (from local to global) topological properties of nodes in brain networks, which are essential for defining the similarity measure of brain networks. To validate the efficacy of our method, we perform extensive experiments on subjects with baseline functional magnetic resonance imaging data obtained from the Alzheimer's disease neuroimaging initiative database. Experimental results demonstrate that the proposed method outperforms several state-of-the-art graph-based methods in MCI classification.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Artificial Intelligence > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE